利用 L-半胱氨酸-石墨烯-L-天冬氨酸纳米复合膜构建Pb2+的新型电化学传感器实现了环境水样中铅的灵敏测定。首先将石墨烯和L-半胱氨酸通过电聚合制备了L-半胱氨酸-石墨烯修饰玻碳电极,然后利用戊二醛通过共价键合连接上L-天冬氨酸,制备了L-天冬氨酸-L-半胱氨酸-石墨烯修饰玻碳电极。由于L-天冬氨酸的良好选择性以及石墨烯的好导电性能,提高了传感器对Pb2+的信号响应和选择性。试验结果表明,测定1×10-7 mol/L的Pb2+,10倍量的Cu2+、Ca2+、Co2+、Cd2+、Mn2+、Zn2+、Ni2+、Hg2+几乎不干扰测定(峰电流改变小于5%)。在pH4.5的醋酸盐缓冲溶液中,铅离子的浓度与峰电流呈良好的线性关系,线性范围为2.0×10-9~6.0×10-6 mol/L,检出限为6.0×10-10 mol/L (S/N=3)。该修饰电极用于环境水样中铅的测定,测定值与ICP-AES的测定值基本一致。
Abstract
The L-cysteine-grapheme-L-aspartic acid nanocomposite film was used to prepare novel electrochemical sensor for Pb2+, realizing the sensitive determination of lead in environmental water sample. Firstly, the L-cysteine-graphene modified glassy carbon electrode was prepared by graphene and L-cysteine via electro-polymerization. Then, L-aspartic acid-L-cysteine-graphene modified glassy carbon electrode was prepared by grafting L-aspartic into the L-cysteine-graphene modified glassy carbon electrode via covalent bonding using glutaraldehyde. Since the good selectivity of L-aspartic acid and good conductivity property of graphene, the signal response and selectivity of sensor to Pb2+ were improved. The testing results showed that, 10-fold of Cu2+, Ca2+, Co2+, Cd2+, Mn2+, Zn2+, Ni2+ and Hg2+ had no interference with the determination of 1×10-7 mol/L Pb2+ (the change of peak current was less than 5 %). In acetate buffer solution at pH4.5, the concentration of Pb2+ showed good linearity to the peak current. The linear range was 2.0×10-9-6.0×10-6 mol/L, and the detection limit was 6.0×10-10 mol/L (S/N=3). The modified electrode was applied to the determination of lead in environmental water sample. The determination results were consistent with those obtained by ICP-AES.
关键词
L-天冬氨酸 /
L-半胱氨酸 /
石墨烯 /
铅 /
电化学传感器
{{custom_keyword}} /
Key words
L-aspartic acid /
L-cysteine /
graphene /
lead /
electrochemical sensor
{{custom_keyword}} /
中图分类号:
O657.15
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 步淑彦,于远臣,刘玉英.腹痛-食欲低下小儿血铅水平观察[J] .医学动物防制(Journal of Medical Pest Control),2004,20(12):755-756.
[2] Yuan S,Chen W H, Hu S S. Simultaneous determination of cadmium and lead with clay nanoparticles and anthraquinone complexly modified glassy carbon electrode[J] . Talanta, 2004, 64(2):922-928.
[3] 刘正华,周方钦,黄荣辉,等.纳米二氧化钛对痕量铅的吸附性能研究[J] . 分析试验室(Chinese Journal of Analysis Laboratory),2006, 25(11):63-66.
[4] 田久英, 卢菊生, 吴宏. 阻抑过氧化氢氧化偶氮胂Ⅰ褪色动力学光度法测定痕量铅和镉[J] . 冶金分析(Metallurgical Analysis), 2008, 28(3):64-67.
[5] 曾泽, 卢琪, 谢琰,等. 石墨炉原子吸收光谱法测定磷酸中铅镉[J] . 冶金分析(Metallurgical Analysis), 2009, 29(5):66-68.
[6] Yang G J, Qu X L, Shen M.Electrochemical behavior of lead(II)at poly(phenol red)modified glassy carbon electrode,and its trace determination by differential pulse anodic stripping voltammetry[J] . Microchim. Acta, 2008, 60:275-281.
[7] 宫立新, 于振安. 乙醇增敏光泽精-H2O2-Pb化学发光体系的研究及应用技术[J] . 分析试验室(Chinese Journal of Analysis Laboratory), 1995, 14(3):11-13.
[8] Wang Y, Li Y M, Tang L H, et al. Application of graphene-modified electrode for selective detection of dopamine[J] . Electrochem. Commun, 2009, 11(4): 889-892.
[9] Chen C Y, Lin M S, Hsu K R. Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups[J] . J. Hazard. Mater, 2008,152(3):986-993.
[10] Huang K J, Yu S, Li J, et al. Extraction of neurotransmitters from rat brain using graphene as a solid-phase sorbent, and their fluorescent detection by HPLC [J] . Microchim. Acta, 2012, 176(3-4): 327-335.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
河南省科技厅基础与前沿项目 (132300410060)
{{custom_fund}}