|
|
X射线荧光光谱法和X射线衍射技术在钢铁工业中的最新进展:化学分析与相分析的结合 |
Didier Bonvin;Ravi Yellepeddi; |
Thermo Electron S.A.; |
|
|
摘要 为满足钢铁工业分析的需要,X射线分析技术取得了创新发展。钢铁冶炼过程不但要求全元素/氧化物的分析,还要求在不同阶段进行相分析。X射线荧光光谱法(XRF)已作为常规方法应用于钢铁工业中的化学分析,而X射线衍射(XRD)的应用则受到限制。通过与钢铁生产者进行紧密合作,将XRD完全与XRF相结合,为进行完全的过程控制和质量控制的相关实验室提供全面的分析能力,这种在科技上取得的突破性进展满足了行业需要。事实上,从铁矿石到烧结矿、炉渣、铸铁和各种合金,XRF-XRD综合系统能够提供完整的化学及相分析,以优化并提高高炉/炼钢炉生产过程的效率。该种方法也适合生产直接还原铁的厂商使用,可对混有金属铁的不同状态的氧化铁及其它混合物/相进行常规定量分析。波长色散X射线荧光(WDXRF)领域已经取得重大进展,钢铁工业能够完全自主地完成特定的分析任务。例如,分析炉渣、铸铁、铁合金以及电镀或电解后的镀层厚度,就只需利用低成本的WDXRF系统来解决。根据分析量以及不同元素的测定要求,设计了从低功耗到高功耗的一系列XRF系统来进行定量分析,所有的"已知"材料都可采用专用的校准程序进行分析。本文还将介绍各种不同的XRF和XRD方案,重点是其应用和分析方法;XRF和XRD二者作为钢铁工业中有价值的分析工具,本文将讨论其不同的应用实例。
|
|
关键词 :
X射线荧光光谱法,
X射线衍射,
整合分析,
烧结相,
游离氧化钙,
铸铁渣
|
出版日期: 2009-12-30
|
通讯作者:
Didier Bonvin;
|
[1] |
夏传波, 赵伟, 郑建业, 姜云, 张会堂. 熔融制样-X射线荧光光谱法测定硅藻土中6种主次组分[J]. 冶金分析, 2019, 39(2): 40-45. |
[2] |
刘伟, 曹吉祥, 张瑜. 熔融制样-X射线荧光光谱法测定钨铁合金中硅锰磷铜钨[J]. 冶金分析, 2019, 39(2): 46-50. |
[3] |
鲍希波, 赵亮, 李才红, 张彬, 马永昌. 熔融制样-X射线荧光光谱法测定硅锰合金和锰铁合金中硅锰磷铁[J]. 冶金分析, 2019, 39(2): 51-55. |
[4] |
宫嘉辰, 白小叶, 姜炳南. 熔融制样-X射线荧光光谱法测定钒钛磁铁矿中12种组分[J]. 冶金分析, 2019, 39(2): 66-70. |
[5] |
崔宏利. 熔融制样-X射线荧光光谱法测定硅质、铝质、镁质和铬质耐火材料中15种组分[J]. 冶金分析, 2019, 39(2): 71-76. |
[6] |
李颖娜, 徐志彬. 基于神经网络集成-X射线荧光光谱法的铁矿石中全铁含量测定[J]. 冶金分析, 2019, 39(1): 35-41. |
[7] |
张玉成, 孟杨, 鞠新华, 姜中行, 马泽军. 锌铝镁镀层汽车板镀层相的X射线衍射分析[J]. 冶金分析, 2018, 38(9): 8-13. |
[8] |
吴景武, 于泓锦, 冯均利, 唐梦奇. 粗制氧化锌的X射线衍射全谱图拟合定量相分析探讨[J]. 冶金分析, 2018, 38(9): 14-19. |
[9] |
亢德华, 于媛君, 邓军华, 王一凌, 李颖. 熔融制样-X射线荧光光谱法测定微晶铸石中6种组分[J]. 冶金分析, 2018, 38(8): 32-36. |
[10] |
殷惠民, 杜祯宇, 任立军, 李玉武. 波长色散X射线荧光光谱谱线重叠和基体效应校正系数有效性判断及在土壤、沉积物重金属测定中的应用[J]. 冶金分析, 2018, 38(7): 1-11. |
[11] |
杨新能, 冯宗平. 熔融制样-X射线荧光光谱法测定钒钛渣中10种组分[J]. 冶金分析, 2018, 38(7): 57-62. |
[12] |
李小青. 熔融制样-X射线荧光光谱法测定锰铁和金属锰中锰硅磷[J]. 冶金分析, 2018, 38(6): 39-42. |
[13] |
曾美云, 邹棣华, 李小丹, 杨小丽. X射线荧光光谱法测定以镍和钴为主的多金属矿中主次成分[J]. 冶金分析, 2018, 38(4): 51-56. |
[14] |
吴超超,陈自斌,邢文青,马秀艳,张祥,张毅. 熔融制样-X射线荧光光谱法测定锰铁、硅锰合金中锰硅磷[J]. 冶金分析, 2018, 38(3): 14-21. |
[15] |
赵伟,夏传波,姜云,王卿,张会堂. X射线荧光光谱法测定透辉石中氧化钙、氧化镁和二氧化硅[J]. 冶金分析, 2018, 38(3): 29-34. |
|
|
|
|