Abstract:The accurate determination of selenium in zinc slag is of great significance for its recycle. The sample was treated with HNO3-HClO4-HF-H2SO4 system by microwave digestion. Then the sample solution was steamed on the electric heating plate until the volume remained 2-3 mL followed by extraction with aqua regia. Consequently, a method for determination of selenium in zinc slag was established by hydride generation atomic fluorescence spectrometry(HG-AFS). The results showed that the mass concentration of selenium in range of 2-16 μg/L had a good linear relationship with its corresponding fluorescence intensity. The correlation coefficient was 0.999 7. The limit of detection of the method was 0.01 μg/g, and limit of quantification was 0.03 μg/g. The statistical analysis of coexisting elements contents in a large number of zinc slag samples was conducted. It was found that the main components in zinc slag were iron, zinc, lead, and aluminum. The interference tests indicated that the coexisting elements in samples had no interference with the determination. Three zinc slag samples with different contents of selenium were used for tests of precision and recovery according to the proposed method. The relative standard deviations(RSD, n=12) of the determination results were between 1.2% and 2.0%, and the recoveries were between 93% and 101%. The content of selenium in zinc slag samples with mass fraction of 2.35-100 μg/g was determined, and the results were basically consistent with those obtained by HG-AFS with alkali fusion.
魏军, 胡艳巧, 刘爱琴, 李丹, 刘俊妙, 陈超. 微波消解-氢化物发生原子荧光光谱法测定锌渣中硒[J]. 冶金分析, 2023, 43(12): 67-72.
WEI Jun, HU Yanqiao, LIU Aiqin, LI Dan, LIU Junmiao, CHEN Chao. Determination of selenium in zinc slag by hydride generation atomic fluorescence spectrometry with microwave digestion. , 2023, 43(12): 67-72.
[1] 卜二军.热镀锌渣回收利用工艺概述[C]//第四届冶金渣固废回收、节能减排及资源综合利用高峰论坛会论文集.石家庄:河北省金属学会, 2019:33-38. [2] 房孟钊.从铜阳极泥中高效分离回收硒的技术优化[J].硫磷设计与粉体工程, 2022(5):36-39, 58. FANG Mengzhao.Optimization of technology for efficient separation and recovery of selenium from copper anode mud[J].Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2022(5):36-39, 58. [3] 郑宇, 王宗义, 侯彤瑶, 等.固相萃取原子荧光光谱法检测稻米和虾仁中的无机硒[J].分析试验室, 2020, 39(6):695-699. ZHENG Yu, WANG Zongyi, HOU Tongyao, et al.Determination of inorganic selenium in rice and shrimp by atomic fluorescence spectrometry with solid phase extraction separation[J].Chinese Journal of Analysis Laboratory, 2020, 39(6):695-699. [4] 卢丽娟, 孙萌, 寇笑然, 等.高通量研磨-X射线荧光光谱法测定不同植源性食品中硒含量[J].中国无机分析化学, 2022, 12(5):86-91. LU Lijuan, SUN Meng, KOU Xiaoran, et al.Determination of selenium content in different plant foods by high-throughput lapping-X-ray fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(5):86-91. [5] 黄秀辉.XRF粉末压片法测定玻璃中的硒含量[J].玻璃, 2022, 49(11):23-27. HUANG Xiuhui.Determination of selenium content in the glass by X-ray fluorescence spectrometry with powder pressed sample[J].Glass, 2022, 49(11):23-27. [6] 刁全平, 郭俊生, 吕淼, 等.紫外分光光度法测定富硒农产品中硒的含量[J].鞍山师范学院学报, 2022, 24(2):54-56. DIAO Quanping, GUO Junsheng, Lü Miao, et al.Determination of Se in selenium-rich agricultural products by ultraviolet spectrophotometer[J].Journal of Anshan Normal University, 2022, 24(2):54-56. [7] 曲艳鹏.浅析如何提取检测微量元素硒[J].中国科技信息, 2014(7):52-53. QU Yanpeng.Analysis on how to extract and detect trace element selenium[J].China Science and Technology Information, 2014(7):52-53. [8] 谢明明, 柴玉青, 岳野, 等.电感耦合等离子体质谱法测定钼中磷、钾、钛、钡、锆、铌、钽、银、硒的含量[J].中国钼业, 2022, 46(6):55-58. XIE Mingming, CHAI Yuqing, YUE Ye, et al.Determination of phosphorus, potassium, titanium, barium, zirconium, niobium, tantalum, silver and selenium in molybdenum by inductively coupled plasma mass spectrometry[J].China Molybdenum Industy, 2022, 46(6):55-58. [9] 刘跃, 王记鲁, 李静, 等.氧气反应模式-电感耦合等离子体串联质谱法测定土壤中砷和硒[J].冶金分析, 2022, 42(10):30-37. LIU Yue, WANG Jilu, LI Jing, et al.Determination of arsenic and selenium in soil by inductively coupled plasma tandem mass spectrometry at oxygen reaction mode[J].Metallurgical Analysis, 2022, 42(10):30-37. [10] 王艳萍, 年季强, 朱杰, 等.三重四极杆电感耦合等离子体质谱法测定K417合金中痕量硒和镉[J].冶金分析, 2022, 42(7):10-18. WANG Yanping, NIAN Jiqiang, ZHU Jie, et al.Determination of trace selenium and cadmium in K417 alloy by triple quadrupole inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2022, 42(7):10-18. [11] 杨志羡.氢化物发生原子荧光光谱法测定原粮中总硒的含量[J].理化检验(化学分册), 2022, 58(8):914-918. YANG Zhixian.Determination of total selenium in raw grain by hydride generation atomic fluorescence spectrometry[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2022, 58(8):914-918. [12] 乔小芳, 袁永海, 杨锋, 等.氢化物发生原子荧光光谱法同时测定钨矿石中硒和碲的含量[J].理化检验(化学分册), 2022, 58(8):933-938. QIAO Xiaofang, YUAN Yonghai, YANG Feng, et al.Simultaneous determination of selenium and tellurium in tungsten ore by hydride generation atomic fluorescence spectrometry[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2022, 58(8):933-938. [13] 孟春杨, 孟艳林, 唐宁, 等.不同消解方式对硒的原子荧光法检测影响[J].绿色科技, 2020(12):123-125. MENG Chunyang, MENG Yanlin, TANG Ning, et al.Effects of different digestion methods on determination of selenium in soil by atomic fluorescence spectrometry[J].Journal of Green Science and Technology, 2020(12):123-125. [14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T14353.15—2014 铜矿石、铅矿石和锌矿石化学分析方法 第15部分:硒量测定[S].北京:中国标准出版社, 2014. [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 16415—2008 煤中硒的测定方法 氢化物发生原子吸收法[S].北京:中国标准出版社, 2008. [16] 环境保护部.HJ680—2013 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法[S].北京:中国环境科学出版社, 2013. [17] 环境保护部.HJ702—2014 固体废物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法[S].北京:中国环境科学出版社, 2014. [18] 杨萍, 李惠.固体废物的不同前处理分析测试对比[J].环境研究与监测, 2020(1):23-26. YANG Ping, LI Hui.Comparison of different pretreatment analysis tests for solid waste[J].Environmental Research and Monitoring, 2020(1):23-26. [19] 中华人民共和国国土资源部.DZ/T 0279.14—2016 区域地球化学样品分析方法 第14部分:硒量测定 氢化物发生-原子荧光光谱法[S].北京:中国标准出版社, 2016. [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.GB/T 14352.16—2010 钨矿石、钼矿石化学分析方法第16部分:硒量测定[S].北京:中国标准出版社, 2010.