Analysis of microstructure,inclusions and carbide of 21-4N gas valve steel by mold cast billet
WU Qiang1, ZHU Haoran1, ZHANG Xiaoyu1, JI Dengping1,2, LIU Bin1,3, FU Jianxun*1
1. Center for Advanced Solidification Technology,School of Materials Science and Engineering,Shanghai University,State Key Laboratory of Advanced Special Steel,Shanghai 200444,China; 2. Zhejiang Qingshan Iron and Steel Co.,Ltd.,Lishui 323000,China; 3. Angang Group Beijing Research Institute,Beijing 102200,China
Abstract:21-4N austenitic gas valve steel is the key material for manufacturing engine exhaust valves. The distribution state of steel matrix structure, inclusions and carbides has an important impact on the service life of the products. In this paper, the phase transformation and carbide precipitation of 21-4N valve steel were calculated based on Thermo-Calc 2020b. The inclusions, microstructure and carbides in mold billet were analyzed by means of metallographic corrosion, metallographic microscope, scanning electron microscope (SEM), energy dispersive spectrometer and X-ray diffraction (XRD) equipped in SEM. The researches showed that the inclusions in 21-4N gas valve steel were mainly composed of Cr-Mn-Al-Ti-O-based oxides, Cr-Mn-Al-Ti-O-N-based oxygen-nitrogen compound inclusions and MnS-based sulfides, and the inclusion density, average equivalent diameter, and area ratio was 45-61 pieces/mm2, 2.9-3.2 μm, and 0.044%-0.061%, respectively. The equivalent diameter of inclusions was concentrated in 2-5 μm. The average grain diameter of 21-4N gas value steel increased linearly from 76.3 μm at the edge to 119.2 μm in the center. The matrix structure was composed of austenite and carbide, where in the carbides included M23C6 massive carbides precipitated along the grain boundaries and the "pearlite-like structure" composed of γ+M23C6. From the edge to the center, the average equivalent diameter, density and area percentage of the "pearlite-like structure" increased from 10.3 μm to 26.3 μm, from 85 pieces/mm2 to 148 pieces/mm2, and from 1.85% to 8.52%, showing an overall increasing trend.
[1] Li Y M,Huang X M,Ji H C,et al.Study on dynamic recrystallization models of 21-4N heat resistant steel[J].Archives of Metallurgy and Materials,2021,66(1):145-152. [2] Xu X L,Yu Z W,Wang J.Influences of microstructure on service properties of 5Cr21Mn9Ni4N heat resistant alloy[J].Materials Science and Technology,2007,23(8):903-909. [3] 朱浩然,周茂华,胡涛,等.镁对H13钢液析碳化物及组织的影响[J].钢铁研究学报,2022,34(11):1278-1285. ZHU Haoran,ZHOU Maohua,HU Tao,et al.Effect of magnesium on primary carbides and microstructureof H13 steel[J].Journal of Iron and Steel Research,2022,34(11):1278-1285. [4] 田志明,王洪刚.奥氏体耐热钢21-4N碳化物析出行为研究[J].冶金信息导刊,2006(2):24-27. TIAN Zhiming,WANG Honggang.Research of carbide precipitation in the austenitic heat resistance steel 21-4N[J].Metallurgical Information Review,2006(2):24-27. [5] Li Y,Wei H,Zan L,et al.Effect of magnesium on the morphology of carbides and on M7C3→M23C6 carbides transformation in the 21-4N heat-resistant steel[J].Ironmaking & Steelmaking,2020,47(1):51-58. [6] 郑淼焱,章争荣,宋玲利,等.21-4N气门钢高温压缩变形行为[J].热加工工艺,2012,41(2):46-48. ZHENG Miaoyan,ZHANG Zhengrong,SONG Lingli,et al.High temperature compression behavior of 21-4N valve steel in hot-working process[J].Material & Heat Treatment,2012,41(2):46-48. [7] 包雪芳,张杰.一种新型高耐模具钢中的碳化物分析[J].冶金分析,1992,12(3):32-35. BAO Xuefang,ZHANG Jie.Analysis of carbide in a new type of the high wear-resistant die-steels[J].Metallurgical Analysis,1992,12(3):32-35. [8] 吴园园,金传伟,赵家七.钢中夹杂物统计方法研究及应用[J].冶金分析,2021,41(4):48-52. WU Yuanyuan,JIN Chuanwei,ZHAO Jiaqi.Research and application of statistical method for inclusions in steel[J].Metallurgical Analysis,2021,41(4):48-52. [9] 祝鑫,晏尚华,陈康为,等.稀土元素对53Cr21Mn9Ni4N气阀钢组织和性能的影响[J].特钢技术,2017,23(4):4-7. ZHU Xin,YAN Shanghua,CHEN Kangwei,et al.Effect of rare earth elements on microstructure and performance of 53Cr21Mn9Ni4N valve steel[J].Special Steel Technology,2017,23(4):4-7. [10] Ji H C,Liu J P,Wang B Y,et al.Microstructure evolution and constitutive equations for the high-temperature deformation of 5Cr21Mn9Ni4N heat-resistant steel[J].Journal of Alloys and Compounds,2017,693:674-687. [11] 夏晓玲,李玉清.5Cr21Mn9Ni4N钢中碳化物层状析出与晶界沉淀[J].特殊钢,1993,14(6):36-40. XIA Xiaoling,LI Yuqing.Stratified carbide deposition and grain boundaryprecipitation in steel 5Cr21Mn9Ni4N[J].Special Steel,1993,14(6):36-40. [12] 夏晓玲,李玉清.5Cr21Mn9Ni4N钢高温加热后的晶界沉淀[J].材料科学与工艺,1994,2(3):28-33. XIA Xiaoling,LI Yuqing.Grain boundary precipitation in a 5Cr21Mn9Ni4N steel after heating at high temperature[J].Material Science & Technology,1994,2(3):28-33. [13] 刘贝贝,孙晗,徐翔宇,等.Mg含量对21-4N气阀钢凝固组织细化作用的研究[J].上海金属,2022,44(1):67-73. LIU Beibei,SUN Han,XU Xiangyu,et al.Effect of Mg content on solidification structure refinement of 21-4N gas valve steel[J].Shanghai Metals,2022,44(1):67-73. [14] Yu S C,Zhu Q H,Wu S Q,et al.Microstructure of steel 5Cr21Mn9Ni4N alloyed by rare earth[J].Journal of Iron and Steel Research(International),2006,13(2):40-44. [15] 许晓磊,于志伟,鲍翔,等.5Cr21Mn9Ni4N耐热钢高温运行条件下组织性能的变化[J].机械工程材料,2003,27(12):49-51. XU Xiaolei,YU Zhiwei,BAO Xiang,et al.Structure and property changes of 5Cr21Mn9Ni4N(21-4N) heat-resisting steel in high temperature service[J].Materials for Mechanical Engineering,2003,27(12):49-51. [16] 苏蒙蒙,季灯平,严道聪,等.碲对303Cu易切削不锈钢切削性能的影响[J].中国冶金,2023,33(4):65-72. SU Mengmeng,JI Dengping,YAN Daocong,et al.Effect of tellurium on machinability of 303Cu free cutting stainless steel[J].China Metallurgy,2023,33(4):65-72. [17] 王英虎,郑淮北,刘庭耀,等.固溶处理对53Cr21Mn9Ni4N耐热钢组织及碳化物的影响[J].金属热处理,2022,47(4):39-45. WANG Yinghu,ZHENG Huaibei,LIU Tingyao,et al.Effect of solid solution treatment on microstructure and carbidesof 53Cr21Mn9Ni4N heatresistant steel[J].Heat Treatment of Metals,2022,47(4):39-45. [18] 晏尚华,曹美姣,李宁,等.固溶温度对21-4N气阀钢组织与性能的影响[J].特钢技术,2016,22(4):4-8. YAN Shanghua,CAO Meijiao,LI Ning,et al.Effect of solid solution temperature on microstructure and properties of 21-4N steel for gas valve[J].Special Steel Technology,2016,22(4):4-8. [19] 于志伟,许晓磊.5Cr21Mn9Ni4N耐热钢等温时效组织研究[J].材料热处理学报(Transactions of Materials and Heat Treatment),2004,25(2):5-7,85. [20] 尹联民,屈盛官,赖福强,等.21-4N气门钢的高温性能[J].材料科学与工程学报,2020,38(3):409-413,517. YIN Lianmin,QU Shengguan,LAI Fuqiang,et al.Study on high temperature characteristics of 21-4N valve steel[J].Journal of Materials Science & Engineering,2020,38(3):409-413,517. [21] 张晓宇,赵梦豪,朱强斌,等.20MnCr5齿轮钢连铸坯中硫化物三维形貌的解析[J].冶金分析,2022,42(8):13-19. ZHANG Xiaoyu,ZHAO Menghao,ZHU Qiangbin,et al.Analysis of three-dimensional morphology of sulfides in continuous casting billet of 20MnCr5 gear steel[J].Metallurgical Analysis,2022,42(8):13-19. [22] 曹美姣.53Cr21Mn9Ni4N气阀钢中层状析出物的形成规律及抑制措施[J].特钢技术,2017,23(1):28-35. CAO Meijiao.Discussion on formation of layer precipitates in gas valve steel 53Cr21Mn9Ni4N and its countermeasure[J].Special Steel Technology,2017,23(1):28-35.