摘要 钛合金中除钛外的其他元素含量的测定有很多方法,但是钛含量的直接测定却鲜有报道。通过对各种类型的钛合金元素含量进行分析发现,在用硫酸铁铵溶液直接滴定钛时,会有很多元素干扰测定。将钛合金溶解之后,补加6 mL 80 g/L三氯化铁溶液,之后加入氢氧化钠溶液分离可能存在的干扰元素如钒、钼、铬、锡等,过滤得到钛的氢氧化物沉淀,将钛的沉淀经酸溶解之后,加入70 mL盐酸溶盐,4 g铝箔还原钛,以20 mL 100 g/L硫氰酸铵做指示剂,迅速用硫酸铁铵溶液进行滴定,通过对结果进行换算,实现了钛合金中钛的直接测定。对钛合金样品进行精密度考察,结果的相对标准偏差(RSD,n=11)为0.09%~0.12%;钛合金标准样品中钛测定结果的相对误差为0.12%~0.22%。
Abstract:There are many methods for the determination of other elements in titanium alloys except of titanium. However, the direct determination of titanium content is rarely reported. Various types of titanium alloys were tested, and it was found that there were many elements interfering with the determination of titanium when it was directly titrated with ammonium ferric sulfate solution. 6 mL of 80 g/L ferric chloride solution was added after the dissolution of titanium alloy. Then sodium hydroxide solution was added to separate the possible interfering elements such as vanadium, molybdenum, chromium and tin. The hydroxide precipitates of titanium were filtrated and then dissolved with acid. The salts were dissolved by adding 70 mL of hydrochloric acid. Then 4 g of aluminum foil was added to reduce titanium. The solution was immediately titrated with ammonium ferric sulfate solution using 20 mL of 100 g/L ammonium thiocyanate as the indicator. The results were converted to realize the direct determination of titanium in titanium alloy.The precision test was conducted on titanium alloy samples,and the relative standard deviations (RSD, n=11) were between 0.09% and 0.12%.The relative errors of titanium in titanium alloy CRMs were between 0.12% and 0.22%.
[1] 姜世娟,国飞,王呈利,等.电感耦合等离子体发射光谱法快速测定钛合金中铝、铬、钼、钒[J].化学分析计量,2020,29(S1):39-42.
JIANG Shijuan,GUO Fei,WANG Chengli,et al. Rapid determination of aluminum,chromium,molybdenum and vanadium in titanium alloy by inductively coupled plasma optical emission spectrometry[J].Chemical Analysis and Meterage,2020,29(S1):39-42.
[2] 王小静,刘厚勇,杨军红,等.电感耦合等离子体原子发射光谱法测定钛合金中锆[J].化学分析计量,2020,29(2):59-61,78.
WANG Xiaojing,LIU Houyong,YANG Junhong,et al.Determination of zirconium in titanium alloy by inductively coupled plasma atomic emission spectrometry[J].Chemical Analysis and Meterage,2020,29(2):59-61,78.
[3] 杜米芳,张健豪,常国梁.电感耦合等离子体发射光谱法测定钛及钛合金中铬和铜[J].冶金分析,2019,39(12):68-73.
DU Mifang,ZHANG Jianhao,CHANG Guoliang.Determination of chromium and copper in titanium and titanium alloy by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis,2019,39(12):68-73.
[4] 朱茜.光电直读光谱法测定钛合金中13种元素[J].理化检验(化学分册),2018,54(12):1430-1434.
ZHU Xi.Determination of 13 elements in titanium alloys by photoelectric direct-reading spectrometry[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2018,54(12):1430-1434.
[5] 郭娟,周文勇. X射线荧光光谱法快速测定钛合金中的Al、V[J].化学工程师,2012,26(6):20-21.
GUO Juan,ZHOU Wenyong.Rapid determination of Al and V in titanium alloys by X-ray fluorescence spectrometry[J].Chemical Engineer,2012,26(6):20-21.
[6] 祁巍,高延强,宋苗,等.熔融制样-X射线荧光光谱法测定钛铁中钛磷硅锰铝[J].冶金分析,2022,42(3):66-71.
QI Wei,GAO Yanqiang,SONG Miao,et al.Determination of titanium,phosphorous,silicon,manganese and aluminum in ferrotitanium by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis,2022,42(3):66-71.
[7] 于亚辉,王丽娟,王素梅,等.电感耦合等离子体原子发射光谱法测定磷铁中锰钛硅磷[J].冶金分析,2020,40(11):50-55.
YU Yahui,WANG Lijuan,WANG Sumei,et al.Determination of manganese,titanium,silicon and phosphorus in ferrophosphorus by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis,2020,40(11):50-55.
[8] 赵昕,严慧,禹莲玲,等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中的高含量钛[J].岩矿测试,2020,39(3):459-466.
ZHAO Xin,YAN Hui,YU Lianling,et al.Determination of high content of titanium in ilmenite by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J].Rock and Mineral Analysis,2020,39(3):459-466.
[9] 杨明明,何争珍.碱熔-硫酸铁铵滴定法测定钛白粉中二氧化钛[J].冶金分析,2022,42(6):76-79.
YANG Mingming,HE Zhengzhen.Determination of titanium dioxide in titanium pigment by ammonium ferric sulfate titrimetry with alkali fusion[J].Metallurgical Analysis,2022,42(6):76-79.
[10] 白小叶,宫嘉辰.快速测定钒钛磁铁矿中的二氧化钛-硫酸高铁铵滴定法[J].有色矿冶,2017,33(2):50-52.
BAI Xiaoye,GONG Jiachen.Rapid determination of titanium dioxide in vanadium titano-magnetite by high ferric ammonium sulfate titration[J].Non-Ferrous Mining and Metallurgy,2017,33(2):50-52.
[11] 朱晓波,李望,管学茂.硫酸铁铵滴定法测定赤泥中二氧化钛[J].冶金分析,2015,35(8):18-21.
ZHU Xiaobo,LI Wang,GUAN Xuemao.Determination of titanium dioxide in red mud by ammonium ferric sulfate titrimetry[J].Metallurgical Analysis,2015,35(8):18-21.
[12] 马光强,邹敏,王琪琳.硫酸铁铵滴定法测定高钛型高炉渣中的钛[J].中国测试,2014,40(3):48-49,60.
MA Guangqiang,ZOU Min,WANG Qilin.Determination of titanium content in high-Ti-bearing blast-furnace slag with ammonium ferric sulfate titration[J].China Measurement & Test,2014,40(3):48-49,60.
[13] 中华人民共和国工业和信息化部.YS/T 861.5—2013 铌钛合金化学分析方法 第5部分:钛量的测定 硫酸铁铵滴定法[S].北京:中国标准出版社,2013.
[14] 张玉滨,杜春萍,张水菊,等.钒钛铁矿中二氧化钛的测定[J].江西冶金,2008,28(6):22-23,32.
ZHANG Yubin,DU Chunping,ZHANG Shuiju,et al.Determination of titanium dioxide content in sefstromite[J].Jiangxi Metallurgy,2008,28(6):22-23,32.
[15] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 4701.1—2009 钛铁 钛含量的测定 硫酸铁铵滴定法[S].北京:中国标准出版社,2009.