Abstract:Mercury is one of the main harmful elements in copper concentrate. The accurate determination of mercury in copper concentrate is of great significance. In experiments, 0.10 g of sample was decomposed by oxygen bomb combustion using 0.50 g of benzoic acid as the accelerant. The volatilized mercury was absorbed with acid potassium permanganate solution and then determined by atomic fluorescence spectrometry. A method for the determination of mercury content in copper concentrate by oxygen bomb combustion decomposition and atomic fluorescence spectrometry(AFS) was established. Under the selected experimental conditions, the mass concentration of mercury in the range of 0-2.0 ng/mL had good linear relationship with the corresponding fluorescence intensity. The correlation coefficient was 0.999 9. The limit of detection of this method was 12 ng/g, and the limit of quantification was 40 ng/g. Three certified reference materials of copper concentrate with different contents of mercury were determined for seven times according to the experimental method. Meanwhile, the standard solution of mercury was added into sample for the standard addition recovery tests. The relative standard deviations (RSD, n=7) of determination results were between 2.1% and 5.8%. The recoveries were between 90% and 107%. Some copper concentrate samples from six regions, i.e., Chile, Australia, Mexico, Peru, Laos and Spain, were selected and compared respectively by the experimental method and the direct mercury measurement method of solid injection in national standard GB/T 3884.20-2018. The t test results showed that there was no significant statistical difference between the two methods.
[1] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 20424—2006重金属精矿产品中有害元素的限量规范[S].北京:中国标准出版社,2006. [2] 中华人民共和国国家质量监督检验检疫总局.SN/T 2721—2010进出口矿产品中砷和汞的检测方法 原子荧光光度法[S].北京:中国标准出版社,2011. [3] 吕晓华,宋武元.氢化物发生-冷原子荧光光谱法测定铜精矿中汞[J].理化检验(化学分册),2010,46(3):244-246. LÜ Xiaohua,SONG Wuyuan.HG-CV-AFS determination of mercury in copper concentrates[J].Physical Testing and Chemical Analysis(Part B:Chemicl Analysis),2010,46(3):244-246. [4] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 3884.11—2005铜精矿化学分析方法 第11部分:汞量的测定 冷原子吸收光谱法[S].北京:中国标准出版社,2005. [5] 中华人民共和国国家质量监督检验检疫总局.SN/T 3511—2013 矿物中汞的测定 固体进样直接测汞法通则[S].北京:中国标准出版社,2013. [6] 陈冉冉,马成骋,张晓天,等.石墨消解-电感耦合等离子体质谱(ICP-MS)法测定铜精矿中汞的含量[J].中国无机分析化学,2019,9(2):20-23. CHEN Ranran,MA Chengcheng,ZHANG Xiaotian,et al.Determination of mercury content in copper concentrate by ICP-MS with graphite digestion[J].Chinese Journal of Inorganic Analytical Chemistry,2019,9(2):20-23. [7] 乔柱,庄梅,张萍萍,等.氢化物发生-原子荧光光谱法测定铬矿中砷[J].冶金分析,2022,42(4):28-33. QIAQ Zhu,ZHUANG Mei,ZHANG Pingping,et al.Determination of arsenic in chromium ore by hydride generation-atomic fluorescence spectrometry[J].Metallurgical Analysis,2022,42(4):28-33. [8] 祝正辉.原子荧光光谱法测定土壤中的砷和汞[J].理化检验(化学分册),2015,51(7):952-954. ZHU Zhenghui.Determination of arsenic and mercury in soil by AFS[J].Physical Test and Chemical Analysis(Part B:Chemical Analysis),2015,51(7):952-954. [9] 崔艳红,李伟,赵富荣,等.微波消解-原子荧光光谱法四通道同时测定中草药中砷、锑、铋和汞元素含量[J].分析仪器,2018(4):21-25. CUI Yanhong,LI Wei,ZHAO Furong,et al.Simultaneous determination of arsenic,antimony,bismuth and mercury in Chinese herbal medicines by microwave digestion-atomic fluorescence spectrometry[J].Analytical Instrumentation,2018(4):21-25. [10] 吕莉,李源,井美娇,等.氢化物发生-原子荧光光谱法测定三种鸡蛋中硒含量的研究[J].光谱学与光谱分析,2019,39(2):607-611. LÜ Li,LI Yuan,JING Meijiao,et al.Determination of selenium in three kinds of eggs by hydride generation-atomic fluorescence spectrometry[J].Spectroscopy and Spectral Analysis,2019,39(2):607-611. [11] 皮中原,张克芮.氧弹分解-冷原子吸收法测定煤中汞[J].洁净煤技术,1999,5(3):39-42. PI Zhongyuan,ZHANG Kerui.Determination of trace mercury in coal by the oxygen bomb combustion-cold atomic absorption method[J].Clean Coal Technology,1999,5(3):39-42. [12] 杨常青,张双双,李芳,等.氧弹分解-原子荧光法快速测定煤中汞[J].分析试验室,2016,35(5):565-567. YANG Changqing,ZHANG Shuangshuang,LI Fang,et al.Rapid determination of mercury in coal by oxygen flask combustion-atomic fluorescence spectrometry method[J].Chinese Journal of Analysis Laboratory,2016,35(5):565-567. [13] 杨常青,萧达辉,康菲,等.氧弹分解-原子荧光法快速测定煤中汞方法的改进[J].分析试验室,2017,36(10):1184-1187. YANG Changqing,XIAO Dahui,KANG Fei,et al.The improvement of rapid determination of mercury in coal by oxygen flask combustion-atomic fluorescence spectrometry[J].Chinese Journal of Analysis Laboratory,2017,36(10):1184-1187. [14] 王运华,肖芙蓉,夏维疆.氧弹燃烧-氢化物发生-原子吸收法测定硫磺中的砷[J].分析试验室,2005,24(6):53-55. WANG Yunhua,XIAO Furong,XIA Weijiang.Determination of trace arsenic in sulphur by HG-AAS after oxygen bomb combustion[J].Chinese Journal of Analysis Laboratory,2005,24(6):53-55. [15] 叶群峰,王成云,徐新华,等.高锰酸钾吸收气态汞的传质-反应研究[J].浙江大学学报(工学版),2007,41(5):831-835,870. YE Qunfeng,WANG Chengyun,XU Xinhua,et al.Mass transfer-reaction of Hg0 absorption in potassium permanganate[J].Journal of Zhejiang University Engineering Science,2007,41(5):831-835,870. [16] Geng W H,Nakajima T,Takanashi H,et al.Utilization of oxygen flask combustion method for the determination of mercury and sulfur in coal[J].Fuel,2008,87(4-5):559-564. [17] 国家市场监督管理总局,中国国家标准化管理委员会.GB/T 3884.20—2018铜精矿化学分析方法 第20部分:汞量的测定 固体进样直接法[S].北京:中国标准出版社,2018.