Abstract:High purity zinc is an important material for preparing compound semiconductor materials, precision castings, reducing agents, high purity metal salts and high purity organometallic compounds. The important application of high purity zinc depends on the development of preparation and detection technology. Focusing on the two industrial standards of ultra high purity zinc product and high purity zinc chemical composition analysis, the preparation methods of high purity zinc including electrolysis, vacuum distillation and regional melting, and the detection methods such as glow discharge mass spectrometry(GD-MS), inductively coupled plasma mass spectrometry(ICP-MS), polarography, hydride generation-atomic fluorescence spectrometry(HG-AFS), inductively coupled plasma atomic emission spectrometry(ICP-AES), atomic absorption spectrometry(AAS), and spectrophotometry were mainly introduced. The preparation of high purity zinc requires stepwise purification, including primary purification by electrolysis, purification by vacuum distillation, refining and ultra-purification by regional smelting. The detection of impurity elements in high purity zinc mainly adopts glow discharge mass spectrometry and inductively coupled plasma mass spectrometry, supplemented by polarography, hydride generation-atomic fluorescence spectrometry,inductively coupled plasma atomic emission spectrometry and other methods as the verification means and auxiliary. It could provide relevant reference and guidance for the researchers concerning the preparation and detection methods of high purity zinc. The development of the preparation and detection technology of high purity zinc has also continuously improved the application field expansion of materials. At present, high purity zinc is more and more used in high-tech fields such as electronic information, biological medicine and so on.
李涛, 王长华, 李继东, 李娜. 高纯锌的制备及检测技术研究进展[J]. 冶金分析, 2023, 43(6): 30-37.
LI Tao, WANG Changhua, LI Jidong, LI Na. Research progress on preparation and detection technology of high purity zinc. , 2023, 43(6): 30-37.
[1] Yu Ho W,Oul C,Taehyung K,et al.Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J].Nature,2019,575(7784):634-638. [2] Roy U N,Camarda G S,Cui Y,et al.Impact of selenium addition to the cadmium-zinc-telluride matrix for producing high energy resolution X-and gamma-ray detectors[J].Scientific Reports,2021,11(1):10338. [3] Georgiadou D G,Semple J,Sagade A A,et al.100 GHz zinc oxide Schottky diodes processed from solution on a wafer scale[J].Nature Electronics,2020,3(11):718-725. [4] Niveen M Daoud,Mohamed S Aly,Omaima H Ezzo,et al.Zinc oxide nanoparticles improve testicular steroidogenesis machinery dysfunction in benzo [α] pyrene challenged rats[J].Scientific Reports,2021,11(1):11675. [5] 徐鑫坤,王先黔,万倩.用电解精炼法制取高纯锌的研究[J].有色金属(冶炼部分),1992(4):15-19. XU Xinkun,WANG Xianqian,WAN Qian.Study on the preparation of high-purity zinc by electrolytic refining[J].Nonferrous Metals (Extractive Metallurgy),1992(4):15-19. [6] Ali S T,Rao K S,Laxman C,et al.Preparation of high pure zinc for electronic applications using selective evaporation under vacuum[J].Separation & Purification Technology,2012,85:178-182. [7] 李文良,罗远辉.区域熔炼法制备高纯锌的研究[J].稀有金属,2011,35(4):537-542. LI Wenliang,LUO Yuanhui.Study on preparation of high-purity zinc by regional melting method[J].Chinese Journal of Rare Metals,2011,35(4):537-542. [8] 王长华,王伟华,墨淑敏,等.辉光放电质谱法测定超高纯锌中的25种杂质元素[J].分析试验室,2019,38(10):79-82. WANG Changhua,WANG Weihua,MO Shumin,et al.Determination of 25 impurity elements in ultra-high purity zinc by glow discharge mass spectrometry[J].Chinese Journal of Analysis Laboratory,2019,38(10):79-82. [9] 葛晶晶,刘洁.电感耦合等离子体质谱法测定高纯锌中7种痕量元素[J].冶金分析,2016,36(9):37-41. GE Jingjing,LIU Jie.Determination of seven trace elements in high purity zinc by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis,2016,36(9):37-41. [10] 陈殿耿,李华昌,孙龄高.氢化物发生-原子荧光光谱法测定高纯锌中砷、锑、铋[J].分析试验室,2006,25(8):38-41. CHEN Diangeng,LI Huachang,SUN Linggao.Determination of arsenic, antimony and bismuth in high-purity zinc by hydride generation-atomic fluorescence spectrometry[J].Chinese Journal of Analysis Laboratory,2006,25(8):38-41. [11] 邱林友,赵尔燕.氢化物发生-XRFA法测定高纯锌中痕量锑[J].仪器仪表与分析监测,1992(3):32-33. QIU Linyou,ZHAO Eryan.Determination of trace antimony in high-purity zinc by hydride generation-XRFA[J].Instrumentation,Analysis and Monitoring,1992(3):32-33. [12] 崔国军,朱仲芬.石墨炉原子吸收光谱法测定高纯锌中铜含量[J].光谱实验室,1991(Z1):7-10. CUI Guojun,ZHU Zhongfen.Determination of copper content in high-purity zinc by graphite furnace atomic absorption spectrometry[J].Chinese Journal of Spectroscopy Laboratory,1991(Z1):7-10. [13] 李华昌.聚乙烯醇-吐温80-苯基荧光酮分光光度法测定高纯锌中痕量钛[J].冶金分析,1997,27(4):16-17. LI Huachang.Spectrophotometric determination of trace titanium in high-purity zinc with polyvinyl alcohol-tween 80-phenylfluorone[J].Metallurgical Analysis,1997,27(4):16-17. [14] Xu Y,Wang C,Huang Y,et al.Recent advances in electrocatalysts for neutral and large-current-density water electrolysis[J].Nano Energy,2021,80:105545. [15] 李逸,解增光,王学森.高纯锌及其延伸产品生产实践简述[J].有色矿冶,2019(6):43-45. LI Yi,XIE Zengguang,WANG Xuesen.Brief introduction of production practice of high-purity zinc and its extended products[J].Nonferrous Mining and Metallurgy,2019(6):43-45. [16] Zhang X,Friedrich S,Friedrich B.Separation behavior of arsenic and lead from antimony during vacuum distillation and zone refining[J].Journal of Materials Research and Technology,2020,9(3):4386-4398. [17] 杨棣,谢刚,杨大锦,等.添加剂在电解制备高纯锌过程中对阴极锌质量的影响分析[J].矿冶,2014,23(1):46-49. YANG Di,XIE Gang,YANG Dajin,et al.Analysis of the effect of additives on the quality of cathode zinc in the process of electrolytic preparation of high-purity zinc[J].Mining and Metallurgy,2014,23(1):46-49. [18] Zhang C M,Shi Y,Jiang L H,et al.Analysis of lead pollution control in anode slime micromorphology evolution induced by Mn2+ ions for cleaner production of zinc electrolysis[J].Journal of Cleaner Production,2021,297(2):126700. [19] Ma Zizhen,Duan Lei,Jiang Jingkun,et al.Characteristics and threats of particulate matter from zinc electrolysis manufacturing facilities[J].Journal of Cleaner Production,2020,259:120874. [20] 王优,罗远辉,尹延西,等.高纯锌制备技术[J].矿冶,2008,17(4):40-46. WANG You,LUO Yuanhui,YIN Yanxi,et al.Preparation technology of high-purity zinc[J].Mining and Metallurgy,2008,17(4):40-46. [21] Gopala A,Kipphardt H,Matschat R,et al.Process methodology for the small scale production of m6 N5 purity zinc using a resistance heated vacuum distillation system[J].Materials Chemistry and Physics,2010,122(1):151-155. [22] 王瑞恒,王子谦.高纯锌的生产[J].有色金属(冶炼部分)(Nonferrous Metals (Extractive Metallurgy)),2001(2):39-41. [23] Li Yonglin,Dong Yaoyao,Liu Rui,et al.New method based on zone melting for determining wax content in sunflower oils[J].Food Analytical Methods,2021,14(3):503-511. [24] 徐克.区域熔炼提纯镧过程中杂质迁移规律的研究[D].北京:北京有色金属研究总院,2020. [25] 房庆圆.探究光伏材料高纯镓的规模化生产[J].当代化工研究,2020(18):95-96. FANG Qingyuan.Explore the large-scale production of high-purity gallium photovoltaic material[J].Modern Chemical Research,2020(18):95-96. [26] 罗云,陈龙,王九飙,等.区域熔炼纯化有机光电材料和高分子材料分析[J].云南化工,2020,47(9):150-151. LUO Yun,CHEN Long,WANG Jiubiao,et al.Analysis of organic photoelectric materials and polymer materials purified by regional melting[J].Yunnan Chemical Technology,2020,47(9):150-151. [27] Aghamaliyev Z A.Three-component zone-melting method:Modeling of the concentration-component distribution in single crystals of Ge-Si solid solutions[J].Semiconductors,2021,55(2):283-288. [28] 张晨阳,潘昆明,徐流杰,等.高温金属结构材料单晶制备及其研究进展[J].稀有金属,2021,45(5):541-550. ZHANG Chenyang,PAN Kunming,XU Liujie,et al.Single crystal preparation and research progress of high-temperature metal structural materials[J].Chinese Journal of Rare Metals,2021,45(5):541-550. [29] 张鸣.单晶硅衬底对温度梯度区域熔炼Si-Al合金生长块体硅的影响研究[D].大连:大连理工大学,2020. [30] Zhang J,Zhou T,Song D,et al.A similar-matrix-matched calibration strategy by using microsecond pulsed glow discharge mass spectrometry in the application of purity analysis of high purity lanthanum oxide[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2020,164:105748. [31] Lara Lobo,Beatriz Fernández,Marta Aranaz,et al.Pulsed radiofrequency glow discharge time-of-flight mass spectrometry:Depth profile analysis of multilayers on conductive and non-conductive substrates[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2020,168:105865. [32] Nunome Y,Kodama K,Ueki Y,et al.Direct analysis of saturated hydrocarbons using glow discharge plasma ionization source for mass spectrometry[J].Talanta,2019,204:310-319. [33] Gubal A,Ganeev A,Bodnar V,et al.Direct determination of oxygen and other elements in non-conducting crystal materials by pulsed glow discharge time-of-flight mass spectrometry with potassium titanyl phosphate as an example[J].Vacuum,2018,153:248-253. [34] 杨海岸,罗舜,刘英波,等.辉光放电质谱法测定高纯锌中痕量杂质元素[J].云南冶金,2017,46(2):126-131. YANG Hai'an,LUO Shun,LIU Yingbo,et al.Determination of trace impurity elements in high-purity zinc by glow discharge mass spectrometry[J].Yunnan Metallurgy,2017,46 (2):126-131. [35] Lobo L,Pereiro R,Fernández B.Elemental direct solid analysis(GD-OES, LIBS, GD-MS and LA-ICP-MS)[M].Encyclopedia of Analytical Science.Third Edition.Oxford:Academic Press,2019:1-8. [36] 陈波,胡兰.电感耦合等离子体质谱法测定土壤样品中六价铬的前处理方法研究[J].理化检验(化学分册),2021,57(4):4-7. CHEN Bo,HU Lan.Study on pretreatment method for determination of hexavalent chromium in soil samples by inductively coupled plasma mass spectrometry[J].Physical Testing and Chemical Analysis(Part B: Chemical Analysis),2021,57(4):4-7. [37] 陈鸿玉,兰文,刘雁鸣,等.ICP-MS法同时测定铝碳酸镁中铝离子和镁离子的含量[J].海峡药学,2021,33(4):3-5. CHEN Hongyu,LAN Wen,LIU Yanming,et al.Simultaneous determination of aluminum and magnesium ions in magnesium aluminate by ICP-MS[J].Strait Pharmaceutical Journal,2021,33(4):3-5. [38] 陈靖,张艳,高颂,等.ICP-MS法测定镍基高温合金中的锗、钌、钡、钍、铀含量[J].分析仪器,2021(2):4-6. CHEN Jing,ZHANG Yan,GAO Song,et al.Determination of germanium,ruthenium,barium,thorium and uranium in nickel-based superalloys by ICP-MS[J].Analytical Instrument,2021(2):4-6. [39] 梁亚丽,杨珍,阿丽莉,等.ICP-MS法测定钼矿石中伴生锂、镓和稀土元素[J].吉林大学学报(理学版),2021,59(2):8-10. LIANG Yali,YANG Zhen,A Lili,et al.Determination of associated lithium, gallium and rare earth elements in molybdenum ore by ICP-MS[J].Journal of Jilin University (Science Edition),2021,59(2):8-10. [40] 王佳翰,李正鹤,杨峰,等.偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J].岩矿测试,2021,40(2):10-13. WANG Jiahan,LI Zhenghe,YANG Feng,et al.Simultaneous determination of 48 elements in marine sediments by lithium metaborate alkali fusion-inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis,2021,40(2):10-13. [41] 杨菊,唐瑞玲,徐进力.电感耦合等离子体质谱(ICP-MS)法测定元素活动态中的金[J].中国无机分析化学,2021,11(3):6-9. YANG Ju,TANG Ruiling,XU Jinli.Determination of gold in the active state of elements by inductively coupled plasma mass spectrometry(ICP-MS) [J].Chinese Journal of Inorganic Analytical Chemistry,2021,11(3):6-9. [42] Fu L,Xie H,Huang J,et al.Determination of metal impurity elements in lithium hexafluorophosphate using inductively coupled plasma tandem mass spectrometry based on reaction gas mixtures[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2021,181:106217. [43] Mazurek A,Wodarczyk Stasiak M,Pankiewicz U,et al.Development and validation of a differential pulse polarography method for determination of total vitamin C and dehydroascorbic acid contents in foods[J].LWT-Food Science and Technology,2019,118(1):108828. [44] Ba B,Ba S.Rapidly renewable silver amalgam annular band electrode for voltammetry and polarography[J].Electrochemistry Communications,2010,12(6):816-819. [45] Malik W U,Haque R.Estimation of metal content in nickel soaps by polarography[J].Nature,1962,194(4831):863-864. [46] Somer Guler,Kalayci Sukru,Sendil Olcay.A new and direct method for the determination of trace elements in spinach using differential pulse polarography[J].Journal of Electroanalytical Chemistry,2016,778:49-52. [47] 谢国珍.高纯锌中痕量镉的吸附波极谱测定[J].理化检验(化学分册),1988,24(1):42-43. XIE Guozhen.Determination of trace cadmium in high-purity zinc by adsorptive wave polarography[J].Physical Testing and Chemical Analysis (Part B: Chemical Analysis),1988,24(1):42-43. [48] Ma Yuanyuan,Zeng Kun,Duan Taicheng.Fast and clean determination of total selenium in biological materials by an improved oxygen flask combustion method combined with hydride generation atomic fluorescence spectrometry[J].Microchemical Journal,2019,148:743-747. [49] Duan X,Liu S,Gao W,et al.Determination of cadmium in water samples by fast pyrolysis-Chemical vapor generation atomic fluorescence spectrometry using titanium hydride powder as a hydrogen source[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2019,162:105720. [50] Zheng Han,Hong Jiajia,Luo Xingling,et al.Combination of sequential cloud point extraction and hydride generation atomic fluorescence spectrometry for preconcentration and determination of inorganic and methyl mercury in water samples[J].Microchemical Journal,2019,145:806-812. [51] 廖振环,吉红念,李莲子,等.流动注射微柱预富集等离子体原子发射光谱法测定高纯锌中痕量稀土元素[J].分析化学,1995,23(11):1319-1322. LIAO Zhenhuan,JI Hongnian,LI Lianzi,et al.Determination of trace rare earth elements in high purity zinc by flow injection microcolumn preconcentration plasma atomic emission spectrometry[J].Chinese Journal of Analytical Chemistry,1995(11):1319-1322. [52] 邓海虹.正丁醇萃取-硅钼蓝分光光度法测定高纯锌中痕量硅[J].金属矿山,2003(2):52-54. DENG Haihong.Determination of trace silicon in high-purity zinc by butyl alcohol extraction bdenum blue spectrophotometry[J].Metal Mine,2003(2):52-54.