Determination of 34 trace elements in iron ore by high resolution inductively coupled plasma mass spectrometry with microwave digestion
GAN Zhaoxiang1,2, MIN Hong2, QIN Yeqiong2, LIU Shu*2, ZHANG Linping*1
1. College of Chemistry and Chemical Engineering, Donghua University,Shanghai 201620, China; 2. Technical Center for Industrial Product and Raw Material Inspection and Testing of Shanghai Customs District,Shanghai 200135, China
摘要 铁矿石中痕量元素的含量具有产地特征,准确测定其含量对揭示铁矿石产地信息具有重要意义。采用6 mL HNO3、1 mL HF、2 mL HCl微波消解铁矿石样品,经150 ℃赶酸,2%HNO3复溶,以103Rh为内标,选择高分辨模式测定Tb、Dy、Er、Tm、Lu,中分辨模式测定Zn、Gd,低分辨模式测定其余元素,建立微波消解-高分辨电感耦合等离子体质谱法(HR-ICP-MS)测定铁矿石中包含稀土元素在内的34种痕量元素(Be、Cr、Mn、Co、Y、Nb、Mo、Cs、Sb、Ba、Nd、Sm、Ta、Pb、Bi、Th、U、V、Zn、Rb、Sr、Sn、La、Ce、Pr、Eu、Tb、Gd、Dy、Ho、Tm、Yb、Lu)的分析方法。在优化的实验条件下,目标元素校准曲线线性相关系数均在0.999 7以上,检出限在0.001 8~0.3 mg/kg之间。选择铁矿石标准样品进行方法学验证,各元素回收率在90%~109%之间,实验室内变异系数在0.6%~6.9%之间。选取澳大利亚、巴西、南非3个国家铁精粉样品进行检测,铁精粉样品实验室内变异系数范围为0.31%~11.2%,表明方法稳定可靠。分析了不同产地铁精粉痕量元素的差异,可为利用痕量元素差异鉴别不同产地铁矿石提供数据支撑。
Abstract:The contents of trace elements in iron ore have characteristics of original producing area, so the accurate determination of elemental content is of great significance to the study of the origin information of iron ore. In experiments, 6 mL of HNO3, 1 mL of HF and 2 mL of HCl were used for the microwave digestion of iron ore samples. After evaporation of acid at 150 ℃, the sample was redissolved with 2%HNO3. 103Rh was used as the internal standard to determine Tb, Dy, Er, Tm and Lu were in high-resolution pattern, to determine Zn and Gd in mid-resolution pattern and to determine the remaining elements in low resolution pattern. The method for the determination of 34 trace elements (Be, Cr, Mn, Co, Y, Nb, Mo, Cs, Sb, Ba, Nd, Sm, Ta, Pb, Bi, Th, U, V, Zn, Rb, Sr, Sn, La, Ce, Pr, Eu, Tb, Gd, Dy, Ho, Tm, Yb and Lu) in iron ores by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) with microwave digestion was established. Under the optimized experimental conditions, the linear correlation coefficients of 34 elements were all greater than 0.999 7, and the limits of detection of the method were in range of 0.001 8-0.3 mg/kg. The iron ore standard sample was selected for method verification. It was found that the recoveries of elements were in range of 90%-109%, and the intra-laboratory variable coefficients were in range of 0.6%-6.9%. Three representative fine iron powder samples from Australia, Brazil and South Africa were selected for testing. The intra-laboratory variable coefficients were in range of 0.31%-11.2%, which indicated the proposed method was stable and reliable. The differences of trace elements in fine iron powder from different areas were analyzed, which provided data support for the identification of iron ores from different producing areas.
干兆祥, 闵红, 秦晔琼, 刘曙, 张琳萍. 微波消解-高分辨电感耦合等离子体质谱法测定铁矿石中34种痕量元素[J]. 冶金分析, 2023, 43(5): 17-26.
GAN Zhaoxiang, MIN Hong, QIN Yeqiong, LIU Shu, ZHANG Linping. Determination of 34 trace elements in iron ore by high resolution inductively coupled plasma mass spectrometry with microwave digestion. , 2023, 43(5): 17-26.
[1] 赵宏军,陈秀法,何学洲,等.全球铁矿床主要成因类型特征与重要分布区带研究[J].中国地质,2018,45(5):890-919. ZHAO Hongjun,CHEN Xiufa,HE Xuezhou,et al.A study of genetic type characteristics and important distribution zones of global iron deposits[J].Geology in China,2018,45(5):890-919. [2] Orberger B,Rouchon V,Westall F,et al.Micro-facies and origin of some archaean cherts (Pilbara, Australia)[J].Special Paper of the Geological Society of America,2006,405(8):133-156. [3] Varentsov I M,Kuleshov V N.Rare elements-markers of the formation setting of manganese and iron ores in the Kalahari and postmasburg manganese fields (South Africa):communication 2. postmasburg iron and manganese field[J].Lithlogy and Mineral Resources,2019,54(5):412-428. [4] Alan R Date,Yuk Ying Cheung,Marianne E Stuart,et al.Application of inductively coupled plasma mass spectrometry to the analysis of iron ores[J].Journal of Analytical Atomic Spectrometry,1988,3(5):653-658. [5] 陈贺海,鲍惠君,付冉冉,等.微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅[J].岩矿测试,2012,31(2):234-240. CHEN Hehai,BAO Huijun,FU Ranran,et al.Determination of Cr,As,Cd,Hg and Pb in iron ores using inductively coupled plasma mass spectrometry with microwave digestion[J].Rock and Mineral Analysis,2012,31(2):234-240. [6] 黄丹宇,刘巍,陶美娟.微波消解-电感耦合等离子体质谱法测定铁矿石中的26种痕量元素[J].分析仪器,2022(1):47-54. HUANG Danyu,LIU Wei,TAO Meijuan.Determination of 26 trace elements in iron ores by inductively coupled plasma mass spectrometry with microwave digestion[J].Analytical Instrumentation,2022(1):47-54. [7] 胡圣虹,林守麟,刘勇胜,等.等离子体质谱法测定地质样品中痕量稀土元素的基体效应及多原子离子干扰的校正研究[J].高等学校化学学报,2000,21(3):368-372. HU Shenghong,LIN Shoulin,LIU Yongsheng,et al.Studies on the calibration of matrix effects and polyatomic ion for rare earth elements in geochemical samples by ICP-MS[J].Chemical Journal of Chinese Universities,2000,21(3):368-372. [8] 于兆水,张勤.六极杆碰撞反应池-等离子体质谱测定生物样品中痕量铬和钒[J].理化检验(化学分册),2007,43(1):11-14. YU Zhaoshui,ZHANG Qin.ICP-MS determination of trace chromium and vanadium in biological samples with the technique of hexapole collision cell[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2007,43(1):11-14. [9] 刘向磊,孙文军,文田耀,等.负载泡塑富集-电感耦合等离子体质谱法测定地质样品中痕量金和银[J].分析化学,2015,43(9):1371-1376. LIU Xianglei,SUN Wenjun,WEN Tianyao,et al.Determination of Au and Ag in geological samples by loaded polyurethane foam-inductively coupled plasma-mass spectrometry[J].Chinese Journal of Analytical Chemistry,2015,43(9):1371-1376. [10] 张瑞霖,梁敏鉴,赵艳兵,等.电感耦合等离子体质谱法测定铁铬铝合金中14种稀土元素[J].冶金分析,2021,41(2):23-29. ZHANG Ruilin,LIANG Minjian,ZHAO Yanbing,et al.Determination of fourteen rare earth elements in iron-chromium-aluminum alloy by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis,2021,41(2):23-29. [11] 金献忠,陈建国,张建波.冷等离子体激光剥蚀电感耦合等离子体质谱法测定钢铁中14种元素[J].冶金分析,2014,34(1):10-16. JIN Xianzhong,CHEN Jianguo,ZHANG Jianbo.Determination of fourteen elements in iron and steel by cool plasma laser ablation inductively coupled plasma mass spectrometry[J].Metallurgical Analysis,2014,34(1):10-16. [12] 李彤,沈康俊,朱亚冠,等.高分辨电感耦合等离子体质谱分析地质样品中痕量元素的应用进展[J].冶金分析,2021,41(4):9-19. LI Tong,SHEN Kangjun,ZHU Yaguan,et al.Application progress of high resolution inductively coupled plasma mass spectrometry in determination of trace elements in geological samples[J].Metallurgical Analysis,2021,41(4):9-19. [13] 王冠,李华玲,任静,等.高分辨电感耦合等离子体质谱法测定地质样品中稀土元素的氧化物干扰研究[J].岩矿测试,2013,32(4):561-567. WANG Guan,LI Hualing,REN Jing,et al.Characterization of oxide interference for the determination of rare earth elements in geological samples by high resolution ICP-MS[J].Rock and Mineral Analysis,2013,32(4):561-567. [14] LI W J,JIN X D,GAO B Y,et al.Analysis of ultra-low level rare earth elements in magnetite samples from banded iron formations using HR-ICP-MS after chemical separation[J].Analytical Methods,2014,6(15):6125-6132. [15] Mketo N,Nomngongo P N,Ngila J C.An overview on analytical methods for quantitative determination of multi-element in coal samples[J].Trends in Analytical Chemistry,2016,85:107-116. [16] Okina O,Lyapunov S,Avdosyeva M,et al.An investigation of the reliability of HF acid mixtures in the bomb digestion of silicate rocks for the determination of trace elements by ICP-MS[J].Geostandards and Geoanalytical Research,2016,40(4):583-597. [17] 陈贺海,荣德福,付冉冉,等.微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素[J].岩矿测试,2013,32(5):702-708. CHEN Hehai,RONG Defu,FU Ranran,et al.Determination of fifteen eare-earth elements in iron ores using inductively coupled plasma mass spectrometry with microwave digestion[J].Rock and Mineral Analysis,2013,32(5):702-708. [18] 中国国家标准化管理委员会.铁矿石 第81部分:GB/T 6730.81—2020 铁矿石 多种微量元素含量的测定:电感耦合等离子体质谱法[S].北京:中国标准出版社,2020. [19] Rondan F S,Henn A S,Mello P A,et al.Determination of Se and Te in coal at ultra-trace level by ICP-MS after microwave-induced combustion[J].Journal of Analytical Atomic Spectrometry,2019,34(5):998-1004. [20] Low F,ZHANG Lian.Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES[J].Talanta,2012,101:346-352. [21] 王佩佩,李霄,宋伟娇.微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J].分析测试学报,2016,35(2):235-240. WANG Peipei,LI Xiao,SONG Weijiao.Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J].Journal of Instrumental Analysis,2016,35(2):235-240. [22] 何晓梅,谢华林,聂西度,等.高分辨等离子体质谱法测定高纯二氧化钛中痕量杂质[J].光谱学与光谱分析,2007,27(6):1192-1196. HE Xiaomei,XIE Hualin,NIE Xidu,et al.Determination of trace impurities in high purity titanium dioxide by high resolution inductively coupled plasma mass spectrometry[J].Spectroscopy and Spectral Analysis,2007,27(6):1192-1196. [23] 刘曙,干兆祥,闵红.电感耦合等离子体质谱分析中金属元素的基体效应[J].冶金分析,2021,41(12):79-86. LIU Shu,GAN Zhaoxiang,MIN Hong.Matrix effect of metal elements in inductively coupled plasma mass spectrometer[J].Metallurgical Analysis,2021,41(12):79-86. [24] 陈忠颖,刘巍,郭颖.电感耦合等离子体质谱法测定高纯铁中21种元素时的基体效应[J].理化检验(化学分册),2017,53(12):1416-1418. CHEN Zhongying,LIU Wei,GUO Ying.Matrix effect in the ICP-MS determination of 21 elements in high purity iron[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2017,53(12):1416-1418. [25] 《岩石矿物分析》编委会.岩石矿物分析:第1分册[M].4版.北京:地质出版社,2011.