Abstract:B30 cupronickel alloy has good corrosion resistance, and it is the main material for the manufacture of thermal pipeline system in complex working environments. In view of the lack of domestic and foreign standards for the analysis of hydrogen in copper and copper alloys, the analysis method and parameter optimization for the determination of hydrogen in B30 cupronickel alloy by pulse heating-inert gas pulse fusion-thermal conductivity method were systemically studied, which was expected to play a guiding role of test method in material technology and application research. The optimal operating conditions were obtained as below: the analysis power and degassing power was 2.75 kW and 3.25 kW, respectively; the sample mass was (2.0±0.2) g; the flux (bath) was 1.0 g of tin flake; the graphite crucible was standard type. The certified reference material of steel was used to establish the calibration coefficients of the instrument. The limit of detection and limit of quantification in the method were 0.11 μg/g and 0.36 μg/g, respectively. The certified reference materials of steel were determined, and the found results were consistent with the certified values. The experimental method was applied for the analysis of actual samples with hydrogen content in range of 0.6-4.0 μg/g. The standard deviations of determination results were less than 0.2 μg/g, and the relative standard deviations (RSD, n=6) were less than 12%. The analysis results of thermal conductivity method and infrared absorption method were consistent. The proposed method was expected to be applied for the determination of hydrogen in high-purity copper, copper and copper alloys by pulse heating-inert gas fusion-thermal conductivity method or infrared absorption method.
[1] David L Ellis,Brian K Hastings.Hydrogen embrittlement resistance of GRCop-84[J].International Journal of Hydrogen Energy,2008,33(20):5661-5671. [2] 褚武扬,乔利杰,李金许,等.氢脆和应力腐蚀:典型体系[M].北京:科学出版社,2013. [3] 郭可讱,高钦,张国梁.铜合金现场测氢仪的研制及测试误差分析[J].大连工学院学报,1980,19(1):15-25. GUO Keren,GAO Qin,ZHANG Guoliang.The development of a quick-determing instrument for rating the gas content of the molten Cu-alloys and the evaluation of measuring errors[J].Journal of Dalian Institute of Technology,1980,19(1):15-25. [4] 张昭盛,刘毓芳.脉冲加热色谱仪测定铜中氢氧的探讨[J].昆明工学院学报(Journal of Kunming Institute of Technology),1995,20(5):96-98. [5] 王剑秋,王启芳.银、铜及其合金中微量氢的测定[J].分析试验室,1987,6(11):5-8. WANG Jianqiu,WANG Qifang.Determination of microamounts of hydrogen in silver,copper and their alloys[J].Chinese Journal of Analysis Laboratory,1987,6(11):5-8. [6] 林文泉,何永年.高频加热-热导法测定钢铁、铜、铌、钽、钛中的氢[J].钢铁研究学报,1995,7(2):70-76. LIN Wenquan,HE Yongnian.Determination of hydrogen in steel,copper,niobium,tantalum and titanium by high frequency induction-thermal conductivity method[J].Journal of Iron and Steel Research,1995,7(2):70-76. [7] 张小英,陈鹏.铜合金中氢含量的测定[J].冶金分析(Metallurgical Analysis),1995,15(6):57-58. [8] 朱跃进.金属中气体分析现状与未来[J].冶金分析,2014,34(3):19-23. ZHU Yuejin.The status quo and prospect of gas analysis in metal[J].Metallurgical Analysis,2014,34(3):19-23. [9] 刘攀,杜丽丽,聂富强,等.惰气熔融-红外吸收/热导法在无机固态材料气体分析中的应用[J].冶金分析,2014,34(6):42-48. LIU Pan,DU Lili,NIE Fuqiang,et al.Application of inert gas fusion-infrared absorption or thermal conductivity method for gas analysis in inorganic solid materials[J].Metallurgical Analysis,2014,34(6):42-48. [10] 刘攀,杜丽丽,唐伟,等.无机固态材料中气体元素分析的现状与进展[J].理化检验(化学分册),2015,51(1):131-136. LIU Pan,DU Lili,TANG Wei,et al.The status and progress of gas element analysis of inorganic solid materials[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2015,51(1):131-136. [11] 国家质量监督检验检疫总局,国家标准化管理委员会.GB/T 14265—2017 金属材料中氢、氧、氮、碳和硫分析方法通则[S].北京:中国标准出版社, 2017. [12] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 4698.15—2011 海绵钛、钛及钛合金化学分析方法 氢量的测定[S].北京:中国标准出版社,2011. [13] 国家市场监督管理总局,国家标准化管理委员会.GB/T 223.82—2018 钢铁 氢含量的测定 惰性气体熔融-热导或红外法[S].北京: 中国标准出版社,2018. [14] 侯红霞,郭飞飞,杨倩倩.脉冲加热惰气熔融-热导法测定无氧铜中氢的含量[C]//北京金属学会第九届冶金年会论文集,北京:中国金属学会,2016. [15] 朱跃进,李素娟.惰气熔融法测定镁中氧、氢、氮[J].冶金分析,2011,31(12):58-61. ZHU Yuejin,LI Sujuan.Determination of oxygen, hydrogen and nitrogen in magnesium by inert gas fusion method[J].Metallurgical Analysis,2011,31(12):58-61. [16] 刘攀,杜丽丽,聂富强.惰气熔融-红外吸收法测定药芯焊丝药粉中高含量氧[J].冶金分析,2014,34(9):53-57. LIU Pan,DU Lili,NIE Fuqiang.Determination of high content oxygen in flux-cored powders by inert gas fusion-infrared absorption method[J].Metallurgical Analysis,2014,34(9):53-57. [17] 刘攀,张欣耀,张毅.惰气熔融-红外吸收法测定铬铝、钼铝中间合金粉中氧[J].冶金分析,2020,40(6):13-20. LIU Pan,ZHANG Xinyao,ZHANG Yi.Determination of oxygen in chromium-aluminum and molybdenum-aluminum master alloy powder by inert gas fusion-infrared absorption method[J].Metallurgical Analysis,2020,40(6):13-20. [18] 张毅,刘攀,孟秋达,等.基于惰气熔融-红外法的镍助熔剂法和锡浴法测定钛及钛合金中氢的方法对比[J].冶金分析,2022,42(2):70-75. ZHANG Yi,LIU Pan,MENG Qiuda,et al.Comparison of nickel flux method and tin bath method based on inert gas fusion-infrared method for the determination of hydrogen in titanium and titanium alloy[J].Metallurgical Analysis,2022,42(2):70-75. [19] 张琳,那铎,尹志华,等.脉冲熔融-红外吸收法测定镧铈合金中氧[J].冶金分析,2020,40(6):8-12. ZHANG Lin,NA Duo,YIN Zhihua,et al.Determination of oxygen in lanthanum-cerium alloy by impulse fusion-infrared absorption method[J].Metallurgical Analysis,2020,40(6):8-12. [20] 胡建成,高宏生,李玉明.B30铜合金电渣重熔工艺实践[J].大型铸锻件,2008(3):27-28. HU Jiancheng,GAO Hongsheng,LI Yuming.Electroslag remelting technology practice for B30 copper alloy[J].Heavy Casting and Forging,2008(3):27-28. [21] 张长均,王蓬,黄小峰,等.氧氮氢气体分析仪的石墨坩埚升温过程研究[J].冶金分析,2010,30(11):71-73. ZHANG Changjun,WANG Peng,HUANG Xiaofeng,et al.Research on temperature process of graphite crucible in oxygen,nitrogen and hydrogen analyzer[J].Metallurgical Analysis,2010,30(11):71-73. [22] 常州伟康石墨制品有限公司. Q/320412 LSG 001—2017 石墨坩埚[S].常州:常州伟康石墨制品有限公司,2017.