Abstract:Over more than 100 years, the development of X-ray spectrometry (XRS) has made great progress. Due to its unique analysis ability in nondestructive testing, in situ and micro-size analysis as well as accurate quantitative analysis of major components, XRS has played important roles in natural exploration, scientific research, technical progress and production application. However, the greatest challenges for XRS are insufficient sensitivity, difficulty in determination of light elements and identification of elemental species. In recent years, with the development of excitation light source, detection means and preparation technology of optical components as well as the in-depth research of elementary particle physics, XRS analysis technique has showed new development trend in some fields, such as reducing detection limit, developing new types of laboratory spectrometers to determine elemental species, and analysis of light elements by muonic X-ray emission spectrometry(μXES). Those studies have become the new trend of discipline development which should be paid attention at present and in near future.
[1] Behling R.X-ray sources:125 years of developments of this intriguing technology[J].Physica Medica,2020,79:162-187. [2] De Vries J L.The early years of X-ray diffraction and X-ray spectrometry[J].Advances in X-ray Analysis,1995,39:1-11. [3] Kravetz R E.X-ray tube[J].The American Journal of Gastroenterology,2001,96(4):1273. [4] Gilfrich J V.100 Years of progress in X-ray fluorescence analysis[J].Advances in X-ray Analysis,1995,39: 29-39. [5] Ong P S,Randall J N.A focusing X-ray polarizer for energy-dispersive analysis[J].X-ray Spectrometry, 1978,7(4):241-248. [6] Turyanskiy A G,Gizha S S,Senkov V M,et al.The energy dispersive scheme of X-ray fluorescence analysis with a crystal polarizer and polycapillary optics[J].X-ray Spectrometry,2017,46(6):548-553. [7] Zhalsaraev B Z.The influence of polarization and filtration of beams on the ED spectrometers sensitivity[J].X-ray Spectrometry,2021,50(1):28-36. [8] Kowalska J K,Lima F A,Pollock C J,et al.A practical guide to high-resolution X-ray spectroscopic measurements and their applications in bioinorganic chemistry[J].Israel Journal of Chemistry,2016,56(9-10):803-815. [9] Lühl L,Mantouvalou I,Schaumann I,et al.Three-dimensional chemical mapping with a confocal XRF setup[J].Analytical Chemistry,2013,85(7):3682-3689. [10] Doyle P M,Berry A J,Schofield, P F,et al.The effect of site geometry, Ti content and Ti oxidation state on the Ti K-edge XANES spectrum of synthetic hibonite[J].Geochimica Et Cosmochimica Acta,2016,187:294-310. [11] Szulczewski M D,Helmke P A,Bleam W F. XANES spectroscopy studies of Cr(VI) reduction by thiols in organosulfur compounds and humic substances[J].Environ. Sci. Technol.,2001,35(6):1134-1141. [12] Jonane I,Cintins A,Kalinko A,et al.X-ray absorption near edge spectroscopy of thermochromic phase transition in CuMoO4[J].Low Temp. Phys.,2018,44(5):434-437. [13] Sarangi R.X-ray absorption near-edge spectroscopy in bioinorganic chemistry:application to M-O2 systems[J].Coordination Chemistry Reviews,2013,257(2):459-472. [14] Piquer C,Laguna-Marco M A,Roca A G,et al.Fe K-edge X-ray absorption spectroscopy study of nanosized nominal magnetite[J].The Journal of Physical Chemistry C,2014,118(2):1332-1346. [15] Szlachetko J,Cotte M,Morse J,et al.Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF)[J].Journal of Synchrotron Radiation,2010,17(3): 400-408. [16] Honkanen A-P,Ollikkala S,Ahopelto T,et al.Johann-type laboratory-scale X-ray absorption spectrometer with versatile detection modes[J].Rev. Sci. Instrum.,2019,90(3):033107. [17] Jahrman E P,Holden W M,Ditter A S,et al.An improved laboratory-based X-ray absorption fine structure and X-ray emission spectrometer for analytical applications in materials chemistry research[J].Rev. Sci. Instrum.,2019,90(2):024106. [18] Legall H,Stiel H,Schnurer M,et al.An efficient X-ray spectrometer based on thin mosaic crystal films and its application in various fields of X-ray spectroscopy[J].Journal of Applied Crystallography,2009,42: 572-579. [19] Schlesiger C,Anklamm L,Stiel H,et al.XAFS spectroscopy by an X-ray tube based spectrometer using a novel type of HOPG mosaic crystal and optimized image processing[J].J. Anal. At. Spectrom.,2015,30(5):1080-1085. [20] Anklamm L,Schlesiger C,Malzer W,et al.A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory[J].Rev. Sci. Instrum.,2014,85(5):053110. [21] Nemeth Z,Szlachetko J,Bajnoczi E G,et al.Laboratory von Hamos X-ray spectroscopy for routine sample characterization[J].Rev. Sci. Instrum.,2016,87(10):103105. [22] Nowak S H,Armenta R,Schwartz C P,et al.A versatile Johansson-type tender X-ray emission spectrometer[J].Rev. Sci. Instrum.,2020,91(3):033101. [23] Kavčič M,Budnar M,Mühleisen A,et al.Design and performance of a versatile curved-crystal spectrometer for high-resolution spectroscopy in the tender X-ray range[J].Rev. Sci. Instrum.,2012,83(3): 033113. [24] Jagodziński P,Szlachetko J,Dousse J-C,et al.A DuMond-type crystal spectrometer for synchrotron-based X-ray emission studies in the energy range of 15-26 keV[J].Rev. Sci. Instrum.,2019,90(6):063106. [25] Seely J F,Hudson L T,Henins A,et al.High resolution spectrometer for extended X-ray absorption fine structure measurements in the 6 keV to 15 keV energy range[J].Rev. Sci. Instrum.,2016,87(11):11E305. [26] Szlachetko M,Berset M,Dousse J-C,et al.High-resolution Laue-type DuMond curved crystal spectrometer[J].Rev. Sci. Instrum.,2013,84(9):093104. [27] Seidler G T,Mortensen D R,Remesnik A J,et al.A laboratory-based hard X-ray monochromator for high-resolution X-ray emission spectroscopy and X-ray absorption near edge structure measurements[J].Rev. Sci. Instrum.,2014,85(11):113906. [28] Malzer W,Grötzsch D,Gnewkow R,et al.A laboratory spectrometer for high throughput X-ray emission spectroscopy in catalysis research[J].Rev. Sci. Instrum.,2018,89(11):113111. [29] Shinoda K,Suzuki S,Kuribayashi M,et al.2 Dimensional position sensitive XAFS by using in-house X-ray spectrometer[J].Journal of Physics:Conference Series,2009,186:012036. [30] Deshpande S K,Chaudhari S M,Pimpale A,et al.An automated laboratory EXAFS spectrometer of Johansson type: indigenous development and testing[J].Pramana,1991,37(4):373-385. [31] Morishima K,Kuno M,Nishio A,et al.Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons[J].Nature,2017,552 (7685):386-390. [32] Sturniolo S,Hillier A.Mudirac: A dirac equation solver for elemental analysis with muonic X-rays[J].X-ray Spectrometry,2021,50(3):180-196. [33] Ninomiya K,Kubo M K,Nagatomo T,et al.Nondestructive elemental depth-profiling analysis by muonic X-ray measurement[J].Anal. Chem.,2015,87(9):4597-6000. [34] Hillier A D,Paul D M,Ishida K.Probing beneath the surface without a scratch — Bulk non-destructive elemental analysis using negative muons[J].Microchem. J.,2016,125:203-207. [35] Hillier A,Ishida K,Seller P,et al.Element specific imaging using muonic X-rays[C]//Proceedings of the 14th International Conference on Muon Spin Rotation,Relaxation and Resonance(μSR2017).Journal of the Physical Society of Japan,2018. [36] Terada K,Ninomiya K,Osawa T,et al.A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam[J].Scientific Reports,2014,4:5072. [37] Ninomiya K,Kitanaka M,Shinohara A,et al.Muonic X-ray measurements on mixtures of CaO/MgO and Fe3O4/MnO[J].Journal of Radioanalytical and Nuclear Chemistry,2018,316(3):1107-1111.