Research progress in determination of trace elements by graphite furnace atomic absorption spectrometry
NA Duo1,2, GUO Lili1, LI Hui1, ZHANG Zhongyuan1
1. Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016, China; 2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Abstract:Accurate analysis of trace substances is a technical guarantee to control major risks, which is of great practical significance to use and service performance of materials as well as environmental safety. Graphite furnace atomic absorption spectrometry (GFAAS) has attracted much attention in recent years due to its advantages in simple operation and high sensitivity. This technique makes use of the absorption of atomic resonance radiation by testing elements in the vapor state for quantitative analysis. The application of GFAAS in analysis of trace elements were reviewed, including the heating program in atomizer, high-resolution continuum source and chemical matrix modification technology. Then its application in trace characterization of nano materials and trace analysis in metal materials were introduced. The main technical parameters were listed, and the problems in analytical method establishment and application of this instrument were pointed out. Moreover, focusing on the recent work in our research group, the current standard system and application progress of GFAAS in determination of impurity elements in superalloys were also reviewed.
那铎, 郭莉莉, 李辉, 张重远. 石墨炉原子吸收光谱法在痕量分析领域的应用进展[J]. 冶金分析, 2021, 41(8): 34-42.
NA Duo, GUO Lili, LI Hui, ZHANG Zhongyuan. Research progress in determination of trace elements by graphite furnace atomic absorption spectrometry. , 2021, 41(8): 34-42.
[1] 张亮亮,雷亚宁.石墨炉原子吸收光谱法测定镍基高温合金中痕量铊[J].理化检验(化学分册),2019,55(1):87-90. ZHANG Liangliang,LEI Yaning.Determination of trace thallium in nickel-based superalloys by graphite furnace atomic absorption spectrometry[J].Physical Testing and Chemical Analysis (Part B: Chemical Analysis),2019,55(1):87-90. [2] 戴瑞平,刘花梅,陈林.曲拉通X-100稀释直接进样-石墨炉原子吸收光谱法测定牛奶中的铅[J].理化检验(化学分册),2021,57(1):57-61. DAI Ruiping,LIU Huamei,CHEN Lin.Triton X-100 dilution direct injection-graphite furnace atomic absorption spectrometry for determination of lead in milk[J].Physical Testing and Chemical Analysis (Part B: Chemical Analysis),2021,57(1):57-61. [3] Schlemmer G,Welz B.Palladium and magnesium nitrates,a more universal modifier for graphite furnace atomic absorption spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1986,41(11):1157-1165. [4] Ortner H M,Bulska E,Rohr U,et al.Modifiers and coatings in graphite furnace atomic absorption spectrometry—mechanisms of action (a tutorial review)[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2002,57(12):1835-1853. [5] Butcher D J.Recent highlights in graphite furnace atomic absorption spectrometry[J].Applied Spectroscopy Reviews,2017,52(9):755-773. [6] Slavin W.Graphite furnace AAS for biological materials[J].Science of the Total Environment,1988,71(1): 17-35. [7] 吴福全,吴华,范苓,等.无标准石墨炉原子吸收的绝对分析[J].环境监测管理与技术,2005,17(1):30-33. WU Fuquan,WU Hua,FAN Ling,et al.Absolute analysis of non-standard graphite furnace atomic absorption[J].The Administration and Technique of Environmental Monitoring,2005,17(1):30-33. [8] Slavin W,Carnrick G R.The possibility of standardless furnace atomic absorption spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,1984,39(2):271-282. [9] 刘秀华,邓义,张豫川.石墨炉原子吸收光谱法测定硒的研究进展[J].理化检验(化学分册),2014,50(2):264-268. LIU Xiuhua,DENG Yi,ZHANG Yuchuan.Research progress in the determination of selenium by graphite furnace atomic absorption spectrometry[J].Physical Testing and Chemical Analysis (Part B: Chemical Analysis),2014,50(2):264-268. [10] Slavin W.Techniques and instrumentation in analytical chemistry, chapter 3 graphite furnace AAS[M].Elsevier:[s.n.],1994: 53-85. [11] Welz B,Lepri F G,Araujo R G O,et al.Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces-a review[J].Analytica Chimica Acta,2009, 647(2): 137-148. [12] Welz B,Vale M G R,Borges D L G,et al.Progress in direct solid sampling analysis using line source and high-resolution continuum source electrothermal atomic absorption spectrometry[J].Analytical and Bioanalytical Chemistry,2007,389(7):2085-2095. [13] Metzger M,Ley P,Sturm M,et al.Screening method for extractable organically bound fluorine (EOF) in river water samples by means of high-resolution-continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS)[J].Analytical and Bioanalytical Chemistry,2019,411(19):4647-4660. [14] Fechetia M,Tognon A L,da Veiga M A M S.Determination of chlorine in food samples via the AlCl molecule using high-resolution continuum source molecular absorption spectrometry in a graphite furnace[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2012,71:98-101. [15] Baumbach G,Limburg T,Einax J W.Quantitative determination of sulfur by high-resolution graphite furnace molecular absorption spectrometry[J].Micro-chemical Journal,2013,106:295-299. [16] Pomarolli L C,da Veiga M A M S,Resano M,et al.Understanding polyatomic interference in the determination of phosphorus via PO molecules using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid analysis[J].Journal of Analytical Atomic Spectrometry,2020,35(10):2305-2314. [17] 乔娜,包毓含,杨丽,等.基体稀释或基体匹配石墨炉原子吸收光谱法测定土壤样品中铅和镉[J].冶金分析,2019,39(11):9-15. QIAO Na,BAO Yuhan,YANG Li,et al.Determination of lead and cadmium in soil samples by matrix dilution or matrix matching graphite furnace atomic absorption spectrometry[J].Metallurgical Analysis,2019,39(11):9-15. [18] 毛香菊,肖芳,刘璐,等.锍镍试金-高分辨率连续光源石墨炉原子吸收光谱法测定铬铁矿中铂族元素[J].冶金分析,2020,40(7):40-46. MAO Xiangju,XIAO Fang,LIU Lu,et al.Determination of platinum group elements in chromite by matte nickel assay-high resolution continuous light source graphite furnace atomic absorption spectrometry[J].Metallurgical Analysis,2020,40(7):40-46. [19] Resano M,Flórez M R,García-Ruiz E.High-resolution continuum source atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple lines. A critical review of current possibilities[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2013,88(1):85-97. [20] Eskina V V,Baranovskaya V B,Karpov Y A,et al.High-resolution continuum source atomic absorption spectrometry:a review of current applications[J].Russian Chemical Bulletin,2020,69(1):1-16. [21] Filatova D G,Es’ kina V V,Baranovskaya V B,et al.Present-day possibilities of high-resolution continuous-source electrothermal atomic absorption spectrometry[J].Journal of Analytical Chemistry,2020,75(1):563-568. [22] Resano M,Aramendía M,Belarra M A.High-resolution continuum source graphite furnace atomic absorption spectrometry for direct analysis of solid samples and complex materials: a tutorial review[J].Journal of Analytical Atomic Spectrometry,2014,29(12):2229-2250. [23] Volynsky A B.Catalytic processes in graphite furnaces for electrothermal atomic absorption spectrometry[J].Spectrochimica Acta Part B: Atomic Spectroscopy,1996,51(13):1573-1589. [24] Volynskii A B.Chemical modifiers based on platinum-group metal compounds in electrothermal atomic absorption spectrometry[J].Journal of Analytical Chemistry,2004,59(6):502-520. [25] Volynsky A B,Wennrich R.Mechanisms of the action of platinum metal modifiers in electrothermal atomic absorption spectrometry: aims and existing approaches[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2002,57(8):1301-1316. [26] Welz B,Schlemmer G,Mudakavi J R.Palladium nitrate-magnesium nitrate modifier for graphite furnace atomic absorption spectrometry. Part 2. Determination of arsenic, cadmium, copper, manganese, lead, antimony, selenium and thallium in water[J].Journal of Analytical Atomic Spectrometry,1988,3(5):695-701. [27] Pereira é R,de Almeida T S,Borges D L G,et al.Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry[J].Talanta,2016,150(1):142-147. [28] Borges A R,Becker E M,Dessuy M B,et al.Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2014,92(1):1-8. [29] da Silva A F,Welz B,Curtius A J.Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2002,57(12):2031-2045. [30] Teague-Nishimura J E,Tominaga T,Katsura T,et al.Direct experimental evidence for in situ graphite and palladium selenide formations with improvement on the sensitivity of selenium in graphite furnace atomic absorption spectrometry[J].Analytical Chemistry,1987,59(13):1647-1651. [31] Qiao H,Jackson K W.Mechanism of modification by palladium in graphite furnace atomic absorption spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1991,46(14):1841-1859. [32] Yamamoto Y,Shirasaki T,Yonetani A,et al.Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization[J].Analytical Sciences,2015,31(5):357-364. [33] Yamamoto Y,Tagami A,Shiarasaki T,et al.Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2018,142(1):55-61. [34] Gagné F,Turcotte P,Gagnon C.Screening test of silver nanoparticles in biological samples by graphite furnace-atomic absorption spectrometry[J].Analytical and Bioanalytical Chemistry,2012,404(6):2067-2072. [35] Brandt A,Leopold K.Investigation of the atomization mechanism of gold nanoparticles in graphite furnace atomic absorption spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2018,150(1):26-32. [36] Leopold K.Characterization of various metal nanoparticles by graphite furnace atomic absorption spectrometry: possibilities and limitations with regard to size and shape[J].Journal of Analytical Atomic Spectrometry,2020,35(11):2536-2544. [37] Brandt A,Gómez-Nieto B,Friedland J,et al.Determination of activation energies for atomization of gold nanoparticles in graphite furnace atomic absorption spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2020,173(1):105976-105976. [38] García-Mesa J C,Montoro-Leal P, Rodríguez-Moreno A,et al.Direct solid sampling for speciation of Zn2+ and ZnO nanoparticles in cosmetics by graphite furnace atomic absorption spectrometry[J]. Talanta,2020,223(1):121795-121795. [39] 郭兴家,徐叔坤,李晓舟,等.萃取分离-石墨炉原子吸收光谱法测定铁镍基高温合金中砷、铅、锡、锑、铋[J].光谱学与光谱分析,2006,26(6):1167-1169. GUO Xingjia,XU Shukun,LI Xiaozhou,et al.Determination of arsenic, lead, tin, antimony and bismuth in iron-nickel-based superalloys by extraction separation-graphite furnace atomic absorption spectrometry[J].Spectroscopy and Spectral Analysis,2006,26(6):1167-1169. [40] Tsai S J.Determination of trace amounts of thallium and tellurium in nickel-base alloys by electrothermal atomic absorption spectrometry[J].Analyst,1993,118(9):1183-1191. [41] 刘正,王海舟,李小佳,等.第三液相富集-石墨炉原子吸收光谱法测定高温合金中痕量碲[J].冶金分析,2016,36(5):1-6. LIU Zheng,WANG Haizhou,LI Xiaojia,et al.Determination of trace tellurium in superalloys by the third liquid phase enrichment-graphite furnace atomic absorption spectrometry[J].Metallurgical Analysis,2016,36(5):1-6. [42] 孙莹,郭莉莉,那铎,等.抗坏血酸辅助-GFAAS 法测定含铁镍基高温合金中痕量镓[J].分析试验室,2018,37(8):942-945. SUN Ying,GUO Lili, NA Duo,et al.Ascorbic acid assisted-GFAAS method for the determination of trace gallium in Fe-containing nickel-based superalloys[J].Chinese Journal of Analysis Laboratory,2018,37(8):942-945.