Performance evaluation of single wavelength excitation energy dispersive X-ray fluorescence spectrometry for determination of cadmium and other elements in soil samples
HAN Weidan1, DU Zhenyu2,3, REN Lijun2,3, YIN Huimin2,3LIU Xiaodong1, FAN Shuang*4
1. Beijing Ancoren Science &Technology Co.,Ltd.,Beijing 101102,China; 2. Environmental Development Centre of the Ministry of Ecology and Environment, Beijing 100029, China; 3. National Research Center for EnvironmentalAnalysis and Measurements, Beijing 100029, China; 4. Guohuan Oasis (Gu′an) Environmental TechnologyCo., Ltd., Langfang 065500, China
Abstract:It is always a difficult task to accurately determine the low content cadmium (0.3 mg/kg) in soil samples by X-ray fluorescence spectrometer (XRF). The content of heavy metals such as cadmium in 129 standard samples of soil and sediment, and actual samples of soil from 4 series were determined by the single-wavelength excitation energy dispersive X-ray fluorescence spectrometer (SW-ED-XRF) based on hyperboloid curved crystal (HF-DCC) full focusing technique and basic parameter method. The actual performance was systematically evaluated using the reference ratio method, the relative error/relative deviation frequency distribution and the relative error/relative deviation (absolute value) distribution data in different content ranges. The results showed that the limit of detection, precision and accuracy of heavy metals such as As, V, Pb, Cr, Cu, Zn, Ni and Mn in soil samples determined by SW-ED-XRF were comparable to those obtained by conventional wavelength dispersive X-ray fluorescence spectrometer (WD-XRF) and energy dispersive X-ray fluorescence spectrometer (ED-XRF). The pass rate of accuracy was greater than 90%, which could meet the quality control requirements of testing laboratories. The content of cadmium in soil sample was quantitatively analyzed by SW-ED-XRF. When the measuring time was 90 s and 300 s, the limit of detection was 0.2 and 0.05 mg/kg, respectively. The results of limit of detection of cadmium were mutually verified by repeated determination method, background counting method and calibration curve method. The rationality of limit of detection of cadmium was confirmed by the lowest content corresponding to its spectral peak which could be distinguished by human eyes. When the measuring time was 90 s, the accuracy qualification rate of cadmium was 79.6%, which was better than that of conventional WD-XRF and ED-XRF. The rapid determination of low-content cadmium in soil samples had made significant progress.
韩伟丹, 杜祯宇, 任立军, 殷惠民, 刘小东, 范爽. 单波长激发能量色散X射线荧光光谱测定土壤样品中镉等元素方法性能评估[J]. 冶金分析, 2021, 41(8): 22-33.
HAN Weidan, DU Zhenyu, REN Lijun, YIN HuiminLIU Xiaodong, FAN Shuang. Performance evaluation of single wavelength excitation energy dispersive X-ray fluorescence spectrometry for determination of cadmium and other elements in soil samples. , 2021, 41(8): 22-33.
[1] 生态环境部,国家市场监督管理总局.GB 15618—2018土壤环境质量 农用地土壤污染风险管控标准(试行)[S].北京:中国环境出版社,2018. [2] 殷惠民,杜祯宇,任立军,等.波长色散X射线荧光光谱谱线重叠和基体效应校正系数有效性判断及在土壤、沉积物重金属测定中的应用[J].冶金分析,2018,38(7):1-11. YIN Huimin,DU Zhenyu, REN Lijun,et al.Coefficient effectiveness judgment of overlapping line and matrix effect correction in wavelength dispersive X-ray fluorescence spectrometry and its application in determination of heavy metal elements in soil and sediment samples[J].Metallurgical Analysis,2018,38(7):1-11. [3] 殷惠民,杜祯宇,李玉武,等.能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J].冶金分析,2018,38(4):1-10. YIN Huimin,DU Zhenyu,LI Yuwu,et al.Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer and simplified matrix effect correction model[J].Metallurgical Analysis,2018,38(4):1-10. [4] 吉昂,卓尚军,李国会.能量色散X射线荧光光谱[M].北京:科学出版社,2011:157-161,9. [5] 分析测试百科网.成分分析的四大神器—XRF、ICP、EDX和WDX[EB/OL]. (2020-06-14) [2021-03-08].https://ibook.antpedia.com/x/490687.html. [6] 杨勇杰,刘俊卿,狄一安,等.青藏高原不同粒径大气颗粒物元素分析[J].环境化学, 2013, 32(6):968-973. YANG Yongjie, LIU Junqing, DI Yian,et al.Determination of trace elements in the particulate matters of different size from tibetan plateau[J].Environmental Chemistry,2013,32(6):968-973. [7] 陈超五.ESS系列环境土壤标样的研制[J].中国环境监测,1990,6(1):23-26. CHEN Chaowu.Study on ESS series of environmental soil standard samples[J].Environmental Monitoring in China,1990,6(1):23-26. [8] 田衎,杨珺,孙自杰,等.矿区污染场地土壤重金属元素分析标准样品的研制[J].岩矿测试,2017,36(1): 82-88. TIAN Kan,YANG Jun,SUN Zijie,et al.Preparation of soil certified reference materials for heavy metals in contaminated sites[J].Rock and Mineral Analysis,2017,36(1):82-88. [9] 田衎,吴忠祥,张萍,等.松花江哈尔滨段水系沉积物中无机元素环境标准样品的研制[J].岩矿测试,2012,31(2):338-341. TIAN Kan,WU Zhongxiang,ZHANG Ping,et al.Determination of sediment environmental reference materials of the Songhuajiang river in Haerbin[J].Rock and Mineral Analysis,2012,31(2):338-341. [10] 彭杨,吴婧,巢静波,等.土壤/沉积物中14种金属元素的ICP-MS准确测定方法[J].环境化学,2017, 36(1):175-182. PENG Yang,WU Jing,CHAO Jingbo,et al.A method for the the accurate determination of 14 metal elements in soils/sediments by ICP-MS[J].Environmental Chemistry,2017,36(1):175-182. [11] 环境保护部办公厅,国土资源部办公厅,农业部办公厅.关于印发全国土壤污染状况详查样品分析测试方法系列技术规定的通知附件.全国土壤污染状况详查土壤样品分析测试方法技术规定[EB/OL]. (2017-10-23) [2017-11-07].http://www.zhb.gov.cn/gkml/hbb/bgth/201711/t20171106_425226.htm. [12] 环境保护部科技标准司. HJ 168—2020环境监测 分析方法标准制修订技术导则[S].北京:中国环境科学出版社,2020. [13] 李玉武,任立军,王婧瑞,等.方法检出限三个评估方法标准解读与比较[J].中国无机分析化学,2015,5(3):24-33. LI Yuwu,REN Lijun,WANG Jingrui,et al.Interpretation and comparison of three procedures for the determination of method detection limit[J].Chinese Journal of Inorganic Analytical Chemistry,2015,5(3):24-33. [14] 罗立强,詹秀春,李国会.X射线荧光光谱仪[M].北京:化学工业出版,2008:89-90. [15] 范爽,郭超,李玉武.等.基于实验室间协作实验评估土壤中重金属能量色散X射线荧光光谱分析方法性能[J].冶金分析,2020,40(8):8-21. FAN Shuang,GUO Chao,LI Yuwu,et al.Evaluation of energy dispersive X-ray fluorescence spectrometry analytical method performance in determination of soil and sediment heavy metals based on inter-laboratory collaborative experiments[J].Metallurgical Analysis,2020,40(8):8-21. [16] 梁国立,邓赛文,吴晓军,等.X射线荧光光谱分析检出限问题的探讨与建议[J].岩矿测试,2003, 22(4):291-296. LIANG Guoli,DENG Saiwen,WU Xiaojun,et al.Discussion on the detection limit in X-ray fluorescence spectrometric analysis[J].Rock and Mineral Analysis,2003,22(4):291-296. [17] 国家质量监督检验检疫总局. JJF 1059—2012测量不确定度评定与表示[S].北京:中国质检出版社,2012:13. [18] 生态环境部.农用地土壤污染状况详查质量保证与质量控制技术规定[EB/OL].(2017) [2018-09-15]. http://www.docin.com/p-2059522788.html. [19] 环境保护部科技标准司.HJ 780—2015 土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法[S].北京:中国环境科学出版社,2015. [20] 国家质量监督检验检疫总局.JJF 1343—2012标准物质定值的通用原则及统计学原理[S].北京:中国质检出版社,2012. [21] 国家质量监督检验检疫总局.GB/T 27407—2010实验室质量控制-利用统计质量保证和控制图技术评价分析测量系统的性能[S].北京:中国质检出版社,2011. [22] 闫岩,殷惠民,李玉武.等.实验室土壤质控样品重金属测试结果允许相对误差判据研究[J].冶金分析,2019,39(4):7-14. YAN Yan,YIN Huimin,LI Yuwu,et al.Study on allowable relative error criteria for heavy metal in laboratory soil quality control sample[J].Metallurgical Analysis,2019,39(4):7-14. [23] 环境保护部法规与标准司.土壤和沉积物 金属元素总量的测定 电感耦合等离子体质谱法(征求意见稿)[EB/OL]. (2020-03-25) [2020-05-06]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202003/t20200331_771923.html.