Determination of twenty impurity elements in nanometer silica fume by inductively coupled plasma mass spectrometry
GU Xing-qian1, SHI Yi-hua*1, QIU Li1, TANG Bi-yu1, QIN Hai-qing1,2,3, YANG Kun4
1. China Nonferrous Metal Guilin Geology and Mining Co.,Ltd.,Guilin 541004,China
2. Guangxi Key Laboratory ofSuperhard Material, Guilin 541004, China
3. National Engineering Research Center for Special Mineral Material,Guilin 541004, China
4. Environmental Monitoring Station of Linshui Country, Sichuan 638500,China
The sample was dissolved with HNO3 and HF system. The mass spectrometry interference was corrected and eliminated by selecting proper isotopes and adopting interference coefficient method. 45Sc was used as internal standard to determine Li, B, Mg, Al, P, Ca, V, Cr, Mn, Co, Ni, Cu and Zn, and 103Rh was used as internal standard to determine Ga, Cd, Sn, Sb, Ba and Pb. Consequently, a determination method of 20 impurity elements in nanometer silica fume by inductively coupled plasma mass spectrometry (ICP-MS) was established. It was found that the volatilization loss of B could be effectively inhibited by adding 1.0mL of 30g/L mannitol solution in sample dissolution and meanwhile controlling the evaporation digestion temperature at 120℃, thus improving the determination accuracy of B. After sample treatment by heating and evaporation digestion to remove silicon, the mass concentration of silicon in test solution was less than 100mg/L. Therefore, the interference of determination by silicon matrix could be eliminated. Moreover, the interference on determination of P was eliminated. The memory effect of B could be eliminated by increasing pump speed and alternating rinsing with 10% (V/V) ammonia water and 10% HNO3 (V/V). The calibration curves were prepared with the mass concentration of elements as abscissa and the corresponding ion strength as ordinate. The correlation coefficients of calibration curves of all elements were higher than 0.9999. The detection limits of method were between 0.0003μg/g and 0.30μg/g. The background equivalent concentration was 0.0011-4.9μg/g. The experimental method was applied for the determination of elements in actual sample of nanometer silica fume. The relative standard deviations (RSD, n=9) of determination results were between 1.1% and 7.6%. The recoveries of standard addition were between 90% and 108%. The inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for comparison test. The results of B, P, Al, Ca, Mg and Fe were basically consistent with those obtained by the proposed method.
蓝仕虎,赵辉,杨娜,等.大面积纳米硅基薄膜太阳电池及制造设备的开发[J].太阳能学报,2015,36(5):1268-1273.LAN Shi-hu,ZHAO Hui,YANG Na,et al.Development of large area nano crystalline silicon deposition system[J]. Acta Energiae Solaris Sinica,2015,36(5):1268-1273.
[2]
Pavesi L,Negro Dal,Mazzoleni C,et al.Optical gain in silicon nanocrystals[J].Nature,2000,408(6811):440-444.
[3]
Trewyn B G,Giri S,Slowing I I,et al.Mesoporous silica nanoparticle based controlled release,drug delivery,and biosensor systems[J].Chemical Communications,2007(31):3236-3245.
[4]
常海波,武浩浩,李小红,等.纳米硅粉/MC尼龙6复合材料的制备与性能[J].化学研究,2015,26(5):524-528.CHANG Hai-bo,WU Hao-hao,LI Xiao-hong,et al.Preparation and properties of nanometer silica fume/MC nylon 6 composites[J].Chemical Research,2015,26(5):524-528.
[5]
谢可,陈松岩,林华传,等.激光熔蒸制备纳米硅微粒的Raman分析[J].厦门大学学报:自然科学版,2015,44(增刊):330-333.XIE Ke,CHEN Song-yan,LIN Hua-chuan,et al.Raman analysis of silicon nanocrystal formed by pulse-laser deposition[J].Journal of Xiamen University:Natural Science,2015,44(Sup.):330-333.
[6]
杨红,金达莱,马照军,等.热CVD法制备纳米硅粉及其表征[J].浙江大学学报:理学版,2008,33(3):280-284.YANG Hong,JIN Da-lai,MA Zhao-jun,et al.Thermal CVD synthesis and characterization of silicon nanopowders[J].Journal of Zhejiang University:Science Edition,2008,35(3):280-284.
刘东,卢志云,张静全,等.利用湿化学法对不同粒径硅粉进行表面改性研究[J].功能材料,2014,45(19):19094-19097.LIU Dong,LU Zhi-yun,ZHANG Jing-quan,et al.Research on surface functionalization of different size silicon particles via wet chemistry[J].Journal of Functional Materials,2014,45(19):19094-19097.
[10]
秦海青,雷晓旭,刘文平,等.纳米硅粉颗粒粒径的测试方法研究[J].超硬材料工程,2017,29(1):23-26.QIN Hai-qing,LEI Xiao-xu,LIU Wen-ping,et al.Study of measuring method of particle size of nano ganister sand[J].Superhard Material Engineering,2017,29(1):23-26.
[11]
靳兰兰,王秀季,李会来,等.电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J].冶金分析,2016,36(7):1-14.JIN Lan-lan,WANG Xiu-ji,LI Hui-lai,et al.Progress in inductively coupled plasma mass spectrometry technology and its application in metallurgical analysis[J].Metallurgical Analysis,2016,36(7):1-14.
[12]
贾双珠,李长安,解田,等.ICP-MS分析应用进展[J].分析试验室,2016,35(6):731-735.JIA Shuang-zhu,LI Chang-an XIE Tian,et al. Application of inductively coupled plasma mass spectrometry in material analysis[J].Chinese Journal of Analysis Laboratory,2016,35(6):731-735.
[13]
杨毅,刘英波,王劲榕,等.电感耦合等离子体质谱法测定多晶硅中18个痕量元素[J].冶金分析,2009,29(11):8-12.YANG Yi,LIU Ying-bo,WANG Jing-rong,et al.Determination of eighteen trace elements in multicrystal silicon by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis,2009,29(11):8-12.
[14]
张金娥,刘英,臧慕文,等.GDMS法和ICP-MS法测定太阳能级多晶硅中杂质元素含量[J].分析试验室,2013,32(9):59-62.ZHANG Jin′e,LIU Ying,ZANG Mu-wen,et al.Determination of impure elements in solar grade polysilicon by GD-MS and ICP-MS[J].Chinese Journal of Analysis Laboratory,2013,32(9):59-62.
龚迎莉,汪双清,沈斌.电感耦合等离子体原子发射光谱法同时测定沉积岩中15个元素[J].岩矿测试,2007,26(3):230-232.GONG Ying-li,WANG Shuang-qing,SHEN Bin. Simultaneous determination of 15 elements in sedimentary rock samples by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis,2007,26(3):230-232.
[17]
刘志娟,褚连青,何秀坤,等.太阳能级多晶硅中痕量金属杂质含量的ICP-MS测定[J].电子科技, 2010,23(8):40-42.LIU Zhi-juan,CHU Lian-qing,HE Xiu-kun,et al.Determination of trace metal impurities in solar grade polysilicon by ICP-MS[J].Electronic Science and Technology,2010,23(8):40-42.
[18]
Krushevska A,Tan S,Passer M,et al. Advances in trace element analysis of silicon wafer surfaces by vapor phase decomposition (VPD) and inductively coupled plasms mass spectrometry (ICP-MS)[J]. J.Anal.Atom.Spectrom.,2000,15(9):1211-1216.
[19]
Nelms S M.ICP Mass Spectrometry Handbook[M].Boca Raton,FL33431,USA:CRC Press LLC,2005:47.
[1]
蓝仕虎,赵辉,杨娜,等.大面积纳米硅基薄膜太阳电池及制造设备的开发[J].太阳能学报,2015,36(5):1268-1273.LAN Shi-hu,ZHAO Hui,YANG Na,et al.Development of large area nano crystalline silicon deposition system[J]. Acta Energiae Solaris Sinica,2015,36(5):1268-1273.
[2]
Pavesi L,Negro Dal,Mazzoleni C,et al.Optical gain in silicon nanocrystals[J].Nature,2000,408(6811):440-444.
[3]
Trewyn B G,Giri S,Slowing I I,et al.Mesoporous silica nanoparticle based controlled release,drug delivery,and biosensor systems[J].Chemical Communications,2007(31):3236-3245.
[4]
常海波,武浩浩,李小红,等.纳米硅粉/MC尼龙6复合材料的制备与性能[J].化学研究,2015,26(5):524-528.CHANG Hai-bo,WU Hao-hao,LI Xiao-hong,et al.Preparation and properties of nanometer silica fume/MC nylon 6 composites[J].Chemical Research,2015,26(5):524-528.
[5]
谢可,陈松岩,林华传,等.激光熔蒸制备纳米硅微粒的Raman分析[J].厦门大学学报:自然科学版,2015,44(增刊):330-333.XIE Ke,CHEN Song-yan,LIN Hua-chuan,et al.Raman analysis of silicon nanocrystal formed by pulse-laser deposition[J].Journal of Xiamen University:Natural Science,2015,44(Sup.):330-333.
[6]
杨红,金达莱,马照军,等.热CVD法制备纳米硅粉及其表征[J].浙江大学学报:理学版,2008,33(3):280-284.YANG Hong,JIN Da-lai,MA Zhao-jun,et al.Thermal CVD synthesis and characterization of silicon nanopowders[J].Journal of Zhejiang University:Science Edition,2008,35(3):280-284.
刘东,卢志云,张静全,等.利用湿化学法对不同粒径硅粉进行表面改性研究[J].功能材料,2014,45(19):19094-19097.LIU Dong,LU Zhi-yun,ZHANG Jing-quan,et al.Research on surface functionalization of different size silicon particles via wet chemistry[J].Journal of Functional Materials,2014,45(19):19094-19097.
[10]
秦海青,雷晓旭,刘文平,等.纳米硅粉颗粒粒径的测试方法研究[J].超硬材料工程,2017,29(1):23-26.QIN Hai-qing,LEI Xiao-xu,LIU Wen-ping,et al.Study of measuring method of particle size of nano ganister sand[J].Superhard Material Engineering,2017,29(1):23-26.
[11]
靳兰兰,王秀季,李会来,等.电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J].冶金分析,2016,36(7):1-14.JIN Lan-lan,WANG Xiu-ji,LI Hui-lai,et al.Progress in inductively coupled plasma mass spectrometry technology and its application in metallurgical analysis[J].Metallurgical Analysis,2016,36(7):1-14.
[12]
贾双珠,李长安,解田,等.ICP-MS分析应用进展[J].分析试验室,2016,35(6):731-735.JIA Shuang-zhu,LI Chang-an XIE Tian,et al. Application of inductively coupled plasma mass spectrometry in material analysis[J].Chinese Journal of Analysis Laboratory,2016,35(6):731-735.
[13]
杨毅,刘英波,王劲榕,等.电感耦合等离子体质谱法测定多晶硅中18个痕量元素[J].冶金分析,2009,29(11):8-12.YANG Yi,LIU Ying-bo,WANG Jing-rong,et al.Determination of eighteen trace elements in multicrystal silicon by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis,2009,29(11):8-12.
[14]
张金娥,刘英,臧慕文,等.GDMS法和ICP-MS法测定太阳能级多晶硅中杂质元素含量[J].分析试验室,2013,32(9):59-62.ZHANG Jin′e,LIU Ying,ZANG Mu-wen,et al.Determination of impure elements in solar grade polysilicon by GD-MS and ICP-MS[J].Chinese Journal of Analysis Laboratory,2013,32(9):59-62.
龚迎莉,汪双清,沈斌.电感耦合等离子体原子发射光谱法同时测定沉积岩中15个元素[J].岩矿测试,2007,26(3):230-232.GONG Ying-li,WANG Shuang-qing,SHEN Bin. Simultaneous determination of 15 elements in sedimentary rock samples by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis,2007,26(3):230-232.
[17]
刘志娟,褚连青,何秀坤,等.太阳能级多晶硅中痕量金属杂质含量的ICP-MS测定[J].电子科技, 2010,23(8):40-42.LIU Zhi-juan,CHU Lian-qing,HE Xiu-kun,et al.Determination of trace metal impurities in solar grade polysilicon by ICP-MS[J].Electronic Science and Technology,2010,23(8):40-42.
[18]
Krushevska A,Tan S,Passer M,et al. Advances in trace element analysis of silicon wafer surfaces by vapor phase decomposition (VPD) and inductively coupled plasms mass spectrometry (ICP-MS)[J]. J.Anal.Atom.Spectrom.,2000,15(9):1211-1216.
[19]
Nelms S M.ICP Mass Spectrometry Handbook[M].Boca Raton,FL33431,USA:CRC Press LLC,2005:47.