Abstract:In order to recover the copper from flash smelting slag and flash converting slag in copper smelting process, the elements in samples were firstly analyzed by X-ray fluorescence spectrometer (XRF). Then, the phase composition of flash smelting slag and flash converting slag was determined by X-ray diffractometer (XRD). Finally, the content of each phase was analyzed by Rietveld full spectrum fitting method. It was found that the main phases of flash smelting slag were Fe2SiO4 and Fe3O4 with mass fraction of 75.04% and 24.96%, respectively. The main phases of flash converting slag were ZnFe2O4, Ca4Fe9O17, Ca2Fe2O5, CuFeO2, Cu2O, Cu and PbO with content of 45.06%, 10.01%, 10.29%, 6.29%, 17.74%, 9.12% and 1.47%, respectively. In other words, the main phases of flash converting slag and conventional converter converting slag were different. Certain amount of Al2O3 was added to flash smelting slag sample and flash converting slag sample. The analytical results of Al2O3 content in sample by Rietveld full spectrum fitting method were in good agreement with the actual values. Therefore, the quantitative analysis results of phases above were accurate. It could provide basic data for the recycling and use of flash smelting slag and flash converting slag.
吴健辉.铜冶炼闪速炉渣工艺矿物学研究[J].有色冶金设计与研究,2014,35(5):5-8.WU Jian-hui.Mineralogical study of slag in copper flash smelting furnace[J].Nonferrous Metals Engineering and Research,2014,35(5):5-8.
[2]
韩彬,童雄,张国浩,等.某铜炉渣的工艺矿物学研究[J].矿产保护与利用,2015(1):53-68.HAN Bin,TONG Xiong,ZHANG Guo-hao,et al.Preocess mineralogy study on a copper slag[J].Conservation and Utilization of Mineral Resources,2015(1):53-68.
[3]
赵凯,宫晓然,李杰,等.急冷铜渣矿物学及其综合利用[J].中国矿业,2015,24(9):102-106.ZHAO Kai,GONG Xiao-ran,LI Jie,et al.Mineralogical characteristics and comprehensive utilization of rapid cooling copper slag[J].China Mining Magazine,2015,24(9):102-106.
[4]
高起鹏.某铜转炉渣中铜的浮选回收试验[J].金属矿山,2012(4):160-162.GAO Qi-peng.Flotation recovery of copper from a slag of copper-smelting converter [J].Metal Mine,2012(4):160-162.
[5]
张保存.铜冶炼转炉渣选铜工艺研究[J].中国矿山工程,2012,41(3):14-17.ZHANG Bao-cun.Study on the recovering copper techniques from converter slag [J].China Mine Engineering,2012,41(3):14-17.
[6]
韩伟.铜冶炼转炉渣选矿工艺研究与设计[J].铜业工程,2013(1):25-27.HAN Wei.Research and design on copper converter cinder processing technology in copper smelting[J].Copper Engineering,2013(1):25-27.
[7]
曾令民,杨喜英,王力珩,等.X射线衍射里特沃尔德全谱图拟合法测定粉尘中游离的SiO2[J].分析化学,2008,36(5):599-603.ZENG Ling-min,YANG Xi-ying,WANG Li-heng,et al.Determination of weight concentration of free silicon dioxide for dust using X-ray diffraction technique and rietveld refinement method[J].Chinese Jourmal of Analytical Chemistry,2008,36(5):599-603.
[8]
宓小川,刘莲君.热轧板氧化皮Rietveld全谱拟合定量分析[J].物理测试,2008,26(2):31-34.MI Xiao-chuan,LIU Lian-jun.Quantitative analysis of scale on hot-rolled plate by rietveld method[J].Physics Examination and Testing, 2008,26(2):31-34.
[9]
王锐,周敬,李文竹,等.Rietveld精修定量分析钢中残余奥氏体[J].物理测试,2008,26(4):46-48.WANG Rui,ZHOU Jing,LI Wen-zhu,et al.Rietveld full patern fitting method for quantitative phase analysis of austenite in steel[J].Physics Examination and Testing,2008,26(4):46-48.
[10]
曾令民,汪万林,陆美文.X射线全谱图拟合定量相分析铁矿石[J].广西科学院学报,2010,26(3):291-294.ZENG Ling-min,WANG Wan-lin,LU Mei-wen.X-ray quantitative analysis of iron ore using rietveld refinement method[J].Journal of Guangxi Academy of Sciences,2010,26(3):291-294.
[11]
曾超,何维.赤泥物相的X射线粉末衍射Rietveld法定量分析研究[J].冶金分析,2014,34(8):1-6.ZENG Chao,HE Wei.Study on quantitative phase analyses of red mud by Rietveld method from X-ray powder diffraction[J].Metallurgical Analysis,2014,34(8):1-6.
[12]
李昆,王文宝.云母矿粉中游离二氧化硅含量的快速测定[J].分析仪器,2014(2):43-46.LI Kun,WANG Wen-bao.Quick determination of free silica in mica powder[J].Analytical Instrumentation,2014(2):43-46.
[13]
王培铭,赵丕琪,刘贤萍.基于Rietveld精修法的水泥熟料物相定量分析[J].建筑材料学报,2015,18(4):692-698.WANG Pei-ming,ZHAO Pi-qi,LIU Xian-ping.Quantitative analysis of cement clinker by rietveld refinement method[J].Journal of Building Materials,2015,18(4):692-698.
[14]
Smyth J R.High temperature crystal chemistry of fayalite T=20 deg C olivine[J].American Mineralogist,1975,60:1092-1097.
[15]
Finger L W,Hazen R W,Hofimeister A M.High-pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4):comparisons with silicate spinels sample:P=0.001 kbar[J].Physics and Chemistry of Minerals,1986,13:215-220.
[16]
Levy D,Pavese A,Hanfland M.Phase transitionof synthetic zinc ferrite spinel (ZnFe2O4) at high pressure from synchrotron X-ray powder diffraction sample:P=0.0 GPa[J].Physics and Chemistry of Minerals,2000,27:638-644.
[17]
PDF-2 Release 2011,JCPDS-ICDD,2011.
[18]
Bertaut E F,Blum P,Sagnieres A.Structure du ferrite bicalcique et de la brownmillerite[J].Acta Crystallographica,1959,12:149-159.
[19]
El Ataoui K,Doumerc J P,Fournes L,et al.Preparation structural characterization and moessbauer study of the CuFe1-xVxO2(0≤x≤0.67) delafossite-type solution [J].Solid State Sciences,2003(5):1239-1245.
[20]
Hafner S S,Nagel S.The electric field gradient at the position of copper in Cu2O and electronic charge density analysis by means of K-factors[J].Physics and Chemistry of Minerals,1983,9:19-22.
[21]
Suh I K,Ohta H,Waseda Y.High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction locality: synthetic sample: at T=293 K[J].Journal of Materials Science,1988,23:757-760.
[22]
Boher P,Garnier P,Gavarri J R,et al.Monoxyde quadratique PbO alpha(I):description de la transition structurale ferroelastique method : X-ray diffractionT=182 K [J].Journal of Solid State Chemistry,1985,57:343-350.