火焰原子吸收光谱法测定针状石油焦中钾铅镁锌铜锰
文婧,孙洪章,卢静华*
辽宁医学院,辽宁锦州 121000
Determination of potassium,lead,magnesium,zinc,copper and manganese in acicular petroleum coke by flame atomic absorption spectrometry
WEN Jing,SUN Hong-zhang,LU Jing-hua*
Liaoning Medical University,Jinzhou 121000,China
摘要 在电炉上将样品碳化至无烟后将铂坩埚置于高温炉内于750 ℃下灼烧约6 h进行灰化,采用四硼酸锂(Li2 B4 O7 )熔融、5%硝酸溶解,以5 mL 100 mg/mL镧溶液为释放剂,建立了火焰原子吸收光谱法(FAAS)测定针状石油焦样品中钾、铅、镁、锌、铜、锰的方法。实验表明,针状石油焦样品中其他元素不干扰待测元素的测定,待测元素间无相互干扰。在选定的最佳仪器条件下,钾、铅、镁、锌、铜、锰的检出限分别为0.008、0.030、0.001、0.005、0.008、0.007 μg/mL。采用实验方法对2批针状石油焦样品进行测定,结果与电感耦合等离子体发射光谱法(ICP-AES)基本一致,相对标准偏差(n =10)为0.63%~3.4%,加标回收率在98%~104%之间。
关键词 :
火焰原子吸收光谱法(FAAS) ,
针状石油焦 ,
钾 ,
铅 ,
镁 ,
锌 ,
铜 ,
锰
Abstract :The sample in platinum crucible was firstly carbonized on electric stove till no smoke appeared and then burned in a high temperature furnace at 750 ℃ for about 6 h for ashing. With lithium tetraborate (Li2 B4 O7 ) for fusion, 5% HNO3 for dissolution and 5 mL of 100 mg/mL lanthanum solution as release agent, a flame absorption atomic emission spectrometry (FAAS) was established for determination of potassium, lead, magnesium, zinc, copper and manganese in acicular petroleum coke. It was found that other elements in acicular petroleum coke didn't interfere with the determination, and there was no interference between testing elements. Under optimal conditions, the detection limit of potassium, lead, magnesium, zinc, copper, manganese was 0.008, 0.030, 0.001, 0.005, 0.008, 0.007 μg/mL, respectively. Two batches of acicular petroleum coke samples were determined by this proposed method, whose results were consistent with those obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES). The relative standard deviation (n=10) was 0.63%-3.4%, and the standard addition recovery was 98%-104%.
Key words :
flame atomic absorption spectrometry(FAAS)
acicular petroleum coke
potassium
lead
magnesium
zinc
copper
manganese
收稿日期: 2014-07-20
基金资助: 辽宁医学院横向课题(LYHX2013001)
通讯作者:
卢静华,女,副教授,硕士生导师;E-mail:jinghual888@163.com
作者简介 : 文婧(1990-),女,硕士,从事药物分析学研究;E-mail:wenjing549@163.com
引用本文:
文婧,孙洪章,卢静华. 火焰原子吸收光谱法测定针状石油焦中钾铅镁锌铜锰[J]. 冶金分析, 2015, 35(3): 46-50.
WEN Jing,SUN Hong-zhang,LU Jing-hua. Determination of potassium,lead,magnesium,zinc,copper and manganese in acicular petroleum coke by flame atomic absorption spectrometry. , 2015, 35(3): 46-50.
链接本文:
http://yjfx.chinamet.cn/CN/10.13228/j.boyuan.issn1000-7571.009448 或 http://yjfx.chinamet.cn/CN/Y2015/V35/I3/46
[1]
金珊,陈世醒,孙杰.原子吸收光谱法测定石油焦中镍和钙含量[J].石油化工(Petrochemical Technology),2000,29(7):524-526.
[2]
卞涛,吕建华.微波消解-ICP-AES测定石油焦中的铁含量[J].石油炼制与化工(Petroleum Processing and Petrochemicals),2006, 37(6):63-65.
[3]
李昌丽,蒋晓光,汤淑芳,等.火焰原子吸收光谱法测定红土镍矿中铜含量[J].冶金分析(Metallurgical Analysis),2012,32(10):74-77.
[4]
刘月成,王尚芝,李海,等.火焰原子吸收光谱法测定云冈石窟风化岩石中钙铜铁锰[J].冶金分析(Metallurgical Analysis),2010,30(2):38-41.
[5]
毕淑云,闫丽丽,庞博,等.火焰原子吸收光谱法测定低碳钢中锰铜锌钾[J].冶金分析(Metallurgical Analysis),2011,31(7):65-67.
[6]
张春明,李宝杰.火焰原子吸收光谱法测定石油焦中的铁、镍、钠[J].光谱实验室(Chinese Journal of Spectroscopy Laboratory),2001,18(6):764-767.
[7]
张金生,李丽华,李秀萍.微波消解-分光光度法测定石油焦中的钒[J].分析试验室(Chinese Journal of Analysis Laboratory),2006,25(1):83-86.
[8]
张金生,李丽华,李秀萍.微波消解-分光光度法测定石油焦中的硅[J].分析测试学报(Journal of Instrumental Analysis),2005,24(5):107-109.
[9]
陈永欣,黎香荣,吕泽娥,等.电感耦合等离子体原子发射光谱法测定锰矿石中铝铜锌铅砷镉[J].冶金分析(Metallurgical Analysis),2009,29(4):46-49.
[10]
王劲榕,杨赟金.ICP-AES法测定高纯石油焦和高纯煤沥青灰分中16个元素[J].云南冶金(Yunnan Metallurgy),2012,41(5):85-89.
[11]
宋吉利,卫晓红,殷刚.电感耦合等离子体原子发射光谱法测定石油焦中钙、铁、镍和钒[J].理化检验:化学分册(Physical Testing and Chemaical Analysis Part B:Chemical Analysis),2009,45(8):905-909.
[12]
薛志勇.粮食灰分测定中应注意的问题[J].粮食流通技术(Grain Distribution Technology),2003(1):21-46.
[13]
李春秀,佟卫芳.食品灰分测定中应注意的问题[J].职业与健康(Occupation and Health),2007,23(9):704-705.
[14]
刘栋,杜鸣.论火焰原子吸收法测镁时铝干扰的机理[J].山东师大学报:自然科学版(Journal of Shandong Normal University:Natural Sciences Edition),1989,4(1):31-35.
[15]
王艳洁,那广水,王震,等.检出限的涵义和计算方法[J].化学分析计量(Chemical Analysis and Meterage),2012,21(5):85-88.
[16]
国家认证认可监督管理委员会.SN/T 1829-2006,石油焦碳中的铝、钡、钙、铁、镁、锰、镍、硅、钠、钛、钒、锌含量测定 电感耦合等离子体原子发射光谱(ICP-AES)法[S].北京:中国标准出版社,2006.
[1]
宋祖峰, 陆向东, 王忠乐, 孙志鹏, 付万云, 王辰翁. 高频熔融制样-X射线荧光光谱法测定镍-铜-铁合金中镍铜铁锡磷硫 [J]. 冶金分析, 2020, 40(9): 31-37.
[2]
罗明贵, 谢毓群, 李通耀, 黎香荣. 固体进样直接测定法测定锌精矿中汞 [J]. 冶金分析, 2020, 40(9): 57-62.
[3]
墨淑敏, 李爱嫦, 邱长丹, 王长华, 曾云斌, 祝利红. 微波消解-火焰原子吸收光谱法测定氮化铝粉中钾和钠 [J]. 冶金分析, 2020, 40(9): 70-74.
[4]
程相恩, 来佳仪, 姚永生, 班俊生, 王风, 王琳. 实验室废旧贵金属材料中铂的回收利用 [J]. 冶金分析, 2020, 40(9): 75-81.
[5]
王翠艳, 杨丝木, 刘护周. 粉末压片制样-X射线荧光光谱法测定硅锰合金中硅锰磷 [J]. 冶金分析, 2020, 40(8): 38-42.
[6]
赵 烨, 边朋沙, 张硕, 刘博雅, 王文娟. 全谱交直流电弧发射光谱法测定地球化学调查样品中9种元素 [J]. 冶金分析, 2020, 40(8): 43-49.
[7]
董礼男, 赵希文, 朱春要, 宋乙峰. 火焰原子吸收光谱法测定热镀锌铝镁合金镀层中铅和镉 [J]. 冶金分析, 2020, 40(8): 62-66.
[8]
张月琳, 刘芳美, 李文英, 赖秋祥. 碘量法测定铜阳极泥中铜的方法改进 [J]. 冶金分析, 2020, 40(8): 77-83.
[9]
曹晨巍, 张盼盼, 胡绍晖, 周蕾, 付建勋. 硫系、碲系、铅系易切削钢组织及硫化物对比分析 [J]. 冶金分析, 2020, 40(7): 8-15.
[10]
常国梁, 刘攀, 张毅. 高频感应燃烧-红外吸收光谱法测定蒙乃尔镍铜合金中碳 [J]. 冶金分析, 2020, 40(7): 16-21.
[11]
李志伟, 黄杰, 孙勇, 陈冲科, 王君玉. 锡试金-电感耦合等离子体质谱法测定铅精矿中贵金属元素 [J]. 冶金分析, 2020, 40(7): 22-28.
[12]
付海阔, 何海梅. 丁二酮肟沉淀分离-EDTA滴定法测定镍钴锰三元氢氧化物中镍 [J]. 冶金分析, 2020, 40(7): 47-51.
[13]
赵靖, 卢女平, 鲍希波. 熔融制样-X射线荧光光谱法测定生铁中硅锰磷 [J]. 冶金分析, 2020, 40(7): 72-76.
[14]
杨忠梅, 李静, 张春花. 熔融制样-X射线荧光光谱法测定轻烧白云石中主要成分 [J]. 冶金分析, 2020, 40(7): 82-86.
[15]
徐超, 张宁, 曾德文. 磷酸镧除氟的H+ ,Zn2+ ,La3+ ∥SO2- 4 ,PO3- 4 -H2 O体系中Zn2+ 的间接络合滴定 [J]. 冶金分析, 2020, 40(6): 1-7.