Applications of electrochemical in situ Raman spectroscopyin molten salts
HU Xian-wei1,2, SHENG Zhuo1,2, GAO Bing-liang1,2, SHI Zhong-ning1,2HUANG Chun-sen1,2, WANG Zhao-wen1,2
1.School of Materials & Metallurgy, Northeastern University, Shenyang 110819, China; 2.Engineering Research Center for Process Technology of Nonferrous Metallurgy, Ministry of Education, Shenyang 110819, China
Abstract:The construction and characteristics of sample cell used for electrochemical in situ Raman spectra research on molten salts in the previous literatures and the development in that research field were reviewed. The sample cells in the previous researches were mainly used for the right (θ = 90°) scattering mode, and the measurements were usually carried out under inert atmosphere. The constant current or constant potential method was mainly used, and the research involves the cathodic behavior of electrolysis of metal Al, Hg, Cd, and Ta in molten chloride, reduction process of oxygen in molten (Li-K)CO3 and Li2CO3, electrochemical process of I2 in molten AlCl3-NaCl of the high energy molten salt battery using metal aluminum as the anode, behavior of element sulfur in molten AlCl3-NaCl during the discharge process of sodium-sulfur battery, the electrochemical corrosion of oxygen ion conductor of Y2O3-stabilized ZrO2 in molten Na2SO4, and the change on structure of melts in the interface between molten KNO3 and NaNO3 and platinum electrode.At last, the development directions of the electrochemical in situ Raman spectroscopy in molten salts are pointed out.
Nafie L A. Recent advances in linear and nonlinear Raman spectroscopy:Part V [J]. Journal of Raman Spectroscopy, 2011, 42(12): 2049-2068.
[9]
Mamantov G, Chapman D M, Harward B L, et al. Molten salt spectroelectrochemistry - recent developments [J]. Electrochemical Society Extended Abstracts, 1985, 85(1): 842-842.
[10]
张明杰,王兆文.熔盐电化学原理与应用[M].北京:化学工业出版社,2006:1-3.
[11]
Gaune-Escard M, Seddon K R. Molten salts and ionic liquids [M]. Hoboken: John Wiley & Sons, 2010: 301-340.
[12]
Raptis C. A reliable versatile optical furnace for Raman spectroscopy of molten salts and hot solids [J]. Journal of Physics E: Scientific Instruments, 1983, 16(8): 749-752.
[13]
Ratkje S K, Rytter E. Raman spectra of molten mixtures containing aluminum fluoride: I. Lithium fluoride-trilithium hexafluoroaluminate eutectic mixture [J]. The Journal of Physical Chemistry, 1974, 78(15): 1499-1502.
[14]
Yoon S Y, Flint J H, Kipouros G J, et al. Raman scattering studies of molten salt electrolysis of light metals [A]// Bautista R G, Wesely R. Energy Reduction Techniques in Metal Electrochemical Processes [C]. New York: The Metallurgical Society of AIME, 1985. 479-490.
[15]
Windisch C F, Lavender C A. Raman spectroscopic studies of chemical speciation in calcium chloride melts [R]. Oak Ridge: United States Department of Energy, 2005.
[16]
Bachtler M, Freyland W, Voyiatzis G A, et al. Electrochemical and simultaneous spectroscopic study of reduction mechanism and electronic conduction during electrodeposition of tantalum in molten alkali chlorides [J]. Berichte Bunsengesellschaft Physikalische Chemie, 1995, 99(1): 21-31.
[17]
Itoh T, Abe K, Dokko K, et al. In situ Raman spectroelectrochemistry of oxygen species on gold electrodes in high temperature molten carbonate melts [J]. Journal of Electrochemistry Society, 2004, 151(12): A2042-A2046.
[18]
Itoh T, Maeda T, Kasuya A. In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species [J]. The Royal Society of Chemistry, 2006, 132: 95-109.
[19]
Windisch C F, Bates J L, Boget D L. In situ laser Raman determination of electrochemical reactions of Y2O3-stabilized ZrO2 and molten Na2SO4 [J]. Journal of the American Ceramic Society, 1987, 70(9): C220-C221.
[20]
Gaphurov M M, Aliev A R. Raman and infrared spectroscopic studies of the platinum electrode/molten nitrate interface [J]. Spectrochimica Acta:Part A, 1999, 55(6): 1237-1241.
[21]
Aliev A R, Gafurov M M, Akhmedov I R. Molecular relaxation in the molten nitrate/platinum electrode interfacial region [J]. Molecular Physics, 2002, 100(21): 3385-3388.
[22]
Yoon S Y, Liu Y, Flint J H, et al. In situ Raman spectroscopic investigation of melt chemistry and electrode processes in laboratory scale aluminum cells [A]// Miller R E. Light Metals 1986[C]. New Orleans: The Metallurgical Society, 1986. 479-482.
[23]
Papatheodorou G N, Boviatsis I V, Voyiatzis G A. In situ Raman spectra of electrode products during electrolysis of HgCl2 in molten LiCl-KCl eutectic [J]. Journal of Applied Electrochemistry, 1992, 22(6): 517-521.
[24]
Brrensen B, Voyiatzis G A, Papatheodoeou G N. The Cd2+ in molten halides and at electrode interfaces [J]. Physical Chemistry Chemical Physics, 1999, 1(14): 3309-3314.
[25]
Tanemoto K, Mamantov G, Marassi R. Resonance Raman and UV-Visible spectral studies of iodine oxidation in chloroaluminate melts [J]. Journal of Inorganic and Nuclear Chemistry, 1981, 43(8): 1779-1785.
[26]
Tanemoto K, Katagiri A, Mamantov G. In situ Raman spectroscopic studies of the rechargeable low temperature molten salt cell [J]. Journal of the Electrochemical Society, 1983, 130(4): 890-893.