Abstract:The basic knowledge and related books of glow discharge optical emission spectrometry technology were briefly introduced. Its application in domestic steel industry was reviewed in detail. The bulk analysis of domestic steel industry was involved in middle-low alloy steel, stainless steel, pig iron, cast iron and high temperature alloy. The anode diameter was main 4 mm. The analytical elements were up to 24 kinds. The excitation power was 12-90 W. The data precision was mostly less than 5 %. The depth profile analysis was mainly involved in galvanized sheet, tinning sheet and color-coated sheet. The determination of fluorine and preparation of scanning electron microscopy samples were bright spots of its application. The progress of international standard and national standard of glow discharge optical emission spectrometry was summarized. The repeatability and reproducibility of glow discharge optical emission spectrometry, X-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry and spark source atomic emission spectrometry in the determination of multi-elements in middle-low alloy steel were compared. The data indicated that the repeatability of glow discharge optical emission spectrometry was low, while the reproducibility was high. Finally, the factors limiting the development of glow discharge optical emission spectrometry were discussed.
邓军华. 辉光放电发射光谱技术及其在国内钢铁行业中的应用[J]. 冶金分析, 2013, 33(10): 24-33.
DENG Jun-hua. Glow discharge optical emission spectrometry and its applications in domestic iron and steel industry. , 2013, 33(10): 24-33.
Winchester M R, Payling R. Radio-frequency glow discharge spectrometry:A critical review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(5): 607-666.
[5]
Dempster M A, Marcus R K. Optimization of hollow cathode diameter for particle beam/hollow cathode glow discharge atomic emission spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(6): 599-610.
[6]
Yang C, Ingeneri K, Mohill M, et al. Influence of discharge parameters on the resolution of depth profiling by pulsed glow discharge atomic emission spectrometry[J]. J. Anal. At. Spectrom., 2000, 15(1): 73-78.
[7]
Yan X, Ingeneri K, Hang W, et al. Factors influencing signal profiles in microsecond pulsed glow discharge atomic emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(8): 819-824.
[8]
Bengtson A, Eklund A, Lundholm M, et al. Further improvements in calibration techniques for depth profiling with glow discharge optical emission spectrometry[J]. J. Anal. At. Spectrom., 1990, 5(6): 563-567.
[9]
Parker M, Hartenstein M L, Marcus R K. Influence of discharge parameters on the resultant sputtered crater shapes for a radio frequency glow discharge atomic emission source[J]. Analytical Chemistry, 1996, 68(23): 4213-4220.
[10]
Prler F, Hoffmann V, Schumann J, et al. Comparison of depth resolution for direct current and radiofrequency modes in glow discharge optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1995, 10(9): 677-680.
[11]
Cho W B, Woo Y A, Kim H J, et al. Comparison between direct-current and radio-frequency gas-jet-boosted glow discharge atomic emission spectrometry for the analysis of steel[J]. Applied Spectroscopy, 1997, 51(7): 1060-1066.
[12]
Hartenstein M L, Christopher S J, áKenneth Marcus R. Evaluation of helium-argon mixed gas plasmas for bulk and depth-resolved analysis by radiofrequency glow discharge atomic emission spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(7): 1039-1045.
[13]
Payling R, Michler J, Aeberhard M. Quantitative analysis of conductive coatings by radio frequency-powered glow discharge optical emission spectrometry: hydrogen, dc bias voltage and density corrections[J]. Surface and Interface Analysis, 2002, 33(6): 472-477.
[14]
Cicala G, De Tommaso E, Raino A C, et al. Study of positive column of glow discharge in nitrogen by optical emission spectroscopy and numerical simulation[J].Plasma Sources Science and Technology, 2009, 18(2): 25-32.
[15]
Galindo R E, Forniés E, Albella J M. Interfacial effects during the analysis of multilayer metal coatings by radio-frequency glow discharge optical emission spectroscopy Part 1. Crater shape and sputtering rate effects[J]. Journal of Analytical Atomic Spectrometry, 2005, 20(10): 1108-1115.
[16]
Kim H J, Lee J H, Kim M Y, et al. Development of open-air type electrolyte-as-cathode glow discharge-atomic emission spectrometry for determination of trace metals in water[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(7): 823-831.
[17]
Cserfalvi T, Mezei P. Direct solution analysis by glow discharge: electrolyte-cathode discharge spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(3): 345-349.
[18]
Rodríguez J, Pereiro R, Sanz-Medel A. Glow discharge atomic emission spectrometry for the determination of chlorides and total organochlorine in water samples via on-line continuous generation of chlorine[J]. Journal of Analytical Atomic Spectrometry, 1998, 13(9): 911-915.
[19]
Huang W, Hu B, Xiong H, et al. Separation and preconcentration combined with glow discharge atomic emission spectrometry for the determination of rare earth elements (La, Nd, Eu, Dy, Y) in geological samples[J]. Fresenius Journal of Analytical Chemistry, 2000, 367(3): 254-258.
[20]
Baude S, Broekaert J A C, Delfosse D, et al. Glow discharge atomic spectrometry for the analysis of environmental samples—a review[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(11): 1516-1525.
[21]
Matsumoto K, Ishiwatari T, Fuwa K. Hydride generation and atomic emission spectrometry with helium glow discharge detection for analysis of biological samples[J]. Analytical Chemistry, 1984, 56(8): 1545-1548.
[22]
Kennethá Marcus R. Analysis of amino acids and organometallic compounds by particle beam-hollow cathode glow discharge atomic emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(1): 43-48.
[23]
Fernández B, Bordel N, Pereiro R, et al. Radio frequency glow discharge-optical emission spectrometry for direct quantitative analysis of glass[J]. Analytical Chemistry, 2004, 76(4): 1039-1044.
[24]
Pan X, Marcus R K. Direct analysis of glass powder samples by radio frequency glow discharge atomic emission spectrometry (rf-GD-AES)[J]. Microchimica Acta, 1998, 129(3-4): 239-250.
[25]
Saito Y, Rahman M K. Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells Ⅳ: An approach to the power fading mechanism by depth profile analysis of electrodes using glow discharge optical emission spectroscopy[J]. Journal of Power Sources, 2007, 174(2): 877-882.
[26]
Luesaiwong W, Marcus R K. Depth-resolved analysis of Ni-P plated aluminium hard disks by radiofrequency glow discharge optical emission spectroscopy (rf-GD-OES)[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(3): 345-353.
[27]
Takagi Y, Suzuki K. Quantitative surface analysis of Al-Mg-(Si) alloys by glow discharge optical emission spectroscopy[J]. Applied Surface Science, 1999, 141(1): 177-185.
[28]
Senofonte O, Caroli S. Determination of gold in precious alloys by glow discharge atomic emission spectrometry[J]. J. Anal. At. Spectrom., 2000, 15(7): 869-872.
[29]
Harville T R, Marcus R K. Determination of precious metal alloys by radio frequency glow discharge atomic emission spectroscopy[J]. Analytical Chemistry, 1995, 67(7): 1271-1277.
[30]
Wagatsuma K, Hirokawa K. Analysis of binary alloy surfaces by low wattage glow discharge emission spectrometry[J]. Analytical Chemistry, 1984, 56(3): 412-416.
[31]
Molchan I S, Marimuthu S, Mhich A, et al. Effect of surface morphology changes of Ti-6Al-4V alloy modified by laser treatment on GDOES elemental depth profiles[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(1): 150-155.
[32]
Gopalakrishnan S G, Huczkowski P, Pernpeintner J, et al. Composition modifications and heat treatment procedures for increasing the emissivity of alumina surface scales on FeCrAl alloys[J]. Materials at High Temperatures, 2012, 29(3): 249-256.
[33]
Bakshi S D, Dutta M, Bandyopadhyay N, et al. Improvement in galvannealed coating of IF-HS steel strips by combined GDOES and colour-etching method[J]. Surface and Coatings Technology, 2007, 201(8): 4547-4552.
[34]
Rout T K. Nanolayered oxide on a steel surface reduces surface reactivity: Evaluation by glow discharge optical emission spectroscopy (GDOES)[J]. Scripta Materialia, 2007, 56(7): 573-576.
[35]
An X, Cawley J, Rainforth W M, et al. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(4): 689-698.
[36]
Martinavicius A, Abrasonis G, Scheinost A C, et al. Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel[J]. Acta Materialia, 2012, 60(10): 4065-4076.
[37]
Angeli J, Kaltenbrunner T, Androsch F M. Quantitative depth-profiling with GDOS: application to ZnNi-electrogalvanized steel sheets[J]. Fresenius Journal of Analytical Chemistry, 1991, 341(1-2): 140-144.
[38]
Shimizu K, Habazaki H, Skeldon P, et al. GDOES depth profiling analysis of the air-formed oxide film on a sputter-deposited Type 304 stainless steel[J]. Surface and Interface Analysis, 2000, 29(11): 743-746.
[39]
Marcus R K, Dempster M A, Gibeau T E, et al. Sampling and analysis of particulate matter by glow discharge atomic emission and mass spectrometries[J].Analytical Chemistry, 1999, 71(15): 3061-3069.
[40]
Michler J, Aeberhard M, Velten D, et al. Depth profiling by GDOES: application of hydrogen and dc bias voltage corrections to the analysis of thin oxide films[J]. Thin Solid Films, 2004, 447: 278-283.
[41]
Habazaki H, Matsuo T, Konno H, et al. Analysis of anodic films on Nb and NbNx by glow discharge optical emission spectroscopy[J]. Surface and Interface Analysis, 2003, 35(7): 618-622.
[42]
Shimizu K, Habazaki H, Skeldon P, et al. GDOES depth profiling analysis of a thin surface film on aluminium[J]. Surface and Interface Analysis, 1999, 27(11): 998-1002.
[43]
Toyoda E, Watanabe M, Higashi Y, et al. Depth profiling analysis of tarnish films on copper formed during short-term outdoor exposure by glow discharge optical emission spectroscopy[J]. Corrosion, 2004, 60(8): 729-735.
[44]
Schwaller P, Fischer A, Thapliyal R, et al. Single-target DC-pulsed deposition of lead zirconate titanate thin films: Investigation of the chemical and mechanical properties by glow-discharge optical emission spectroscopy and nanoindentation[J]. Surface and Coatings Technology, 2005, 200(5): 1566-1571.
[45]
Encinas E, Galindo R E, Martín J M, et al. Hydrogen and oxygen in-depth evolution during electrochemical hydrogenation/dehydrogenation of Y-Pd thin films analyzed by glow discharge optical emission spectroscopy[J]. Thin Solid Films, 2008, 516(18): 6524-6530.
[46]
Uemura M, Yamamoto T, Fushimi K, et al. Depth profile analysis of thin passive films on stainless steel by glow discharge optical emission spectroscopy[J]. Corrosion Science, 2009, 51(7): 1554-1559.
[47]
Yang C, Ingeneri K, Mohill M, et al. Depth profiling of thin films with pulsed glow discharge atomic emission spectrometry[J]. Analytical Chemistry, 1999, 71(23): 5328-5334.
[48]
Pisonero J, Fernández B, Pereiro R, et al. Glow-discharge spectrometry for direct analysis of thin and ultra-thin solid films[J]. TrAC Trends in Analytical Chemistry, 2006, 25(1): 11-18.
[49]
Angeli J, Bengtson A, Bogaerts A, et al. Glow discharge optical emission spectrometry: moving towards reliable thin film analysis-a short review[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(6): 670-679.
[50]
Escobar Galindo R, Forniés E, Albella J M. Compositional depth profiling analysis of thin and ultrathin multilayer coatings by radio-frequency glow discharge optical emission spectroscopy[J]. Surface and Coatings Technology, 2006, 200(22): 6185-6189.
[51]
Payling R, Aeberhard M, Delfosse D. Improved quantitative analysis of hard coatings by radiofrequency glow discharge optical emission spectrometry (rf-GD-OES)[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(1): 50-55.
[52]
Galindo R E, Manninen N K, Palacio C, et al. Advanced surface characterization of silver nanocluster segregation in Ag-TiCN bioactive coatings by RBS, GDOES and ARXPS[J]. Analytical and Bioanalytical Chemistry, 2013, 405(19):6259-6269.
[53]
Ifezue D. Certified reference materials for quantification of vanadate species in anodic alumina Rf-GDOES depth profiles[J]. J. Anal. At. Spectrom., 2013, 28:1311-1319.
[54]
Gamez G, Mohanty G, Johann M. Ultra-fast elemental mapping of materials combinatorial libraries and high-throughput screening samples via pulsed glow discharge optical emission spectroscopy[J]. J. Anal. At. Spectrom., 2013, 28: 1016-1023.
[55]
Molchan I S, Thompson G E, Skeldon P, et al. Analysis of molecular monolayers adsorbed on metal surfaces by glow discharge optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(1): 121-126.
[56]
Jones D G, Payling R, Gower S A, et al. Analysis of pigmented polymer coatings with radiofrequency glow discharge optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(3): 369-373.
[57]
Webb M R, Hoffmann V, Hieftje G M. Surface elemental mapping using glow discharge-optical emission spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(12): 1279-1284.
[58]
Hartenstein M L, Christopher S J, áKenneth Marcus R. Evaluation of helium-argon mixed gas plasmas for bulk and depth-resolved analyses by radiofrequency glow discharge atomic emission spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(7): 1039-1045.
[59]
Dorka R, Kunze R, Hoffmann V. Investigation of SiO2 layers by glow discharge optical emission spectroscopy including layer thickness determination by an optical interference effect[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(7): 873-876.
[60]
Thobor A, Rousselot C, Mikhailov S. Depth profiles study of n (TiN+AlN) bilayers systems by GDOES and RBS techniques[J]. Surface and Coatings Technology, 2003, 174: 351-359.
[61]
Garca J A, Rodrguez R J, Martnez R, et al. Depth profiling of industrial surface treatments by rf and dc glow discharge spectrometry[J]. Applied Surface Science, 2004, 235(1): 97-102.
[62]
万真真,李小佳,王永清,等.用于实时溅射深度测量的新型Grimm辉光放电光源的设计[J].光谱学与光谱分析(Spectroscopy and Spectral Analysis),2011,31(4):1142-1146.
[63]
万真真,王永清,李小佳,等.直流辉光放电等离子体激发光源自动调节控制系统[J].光谱学与光谱分析(Spectroscopy and Spectral Analysis),2011,31(3):839-843.
[64]
Escobar Galindo R, Gago R, Albella J M, et al. Comparative depth-profiling analysis of nanometer-metal multilayers by ion-probing techniques[J]. TrAC Trends in Analytical Chemistry, 2009, 28(4): 494-505.