Study on quantitative statistical distribution characterization method for niobium-rich phase in GH4169 alloy and its application
SONG Yan1, WANG Peng*2,3, YANG Zhigang3, ZHOU Qingqing3, LI Dongling2,3, BAO Lei3
1. Central Iron and Steel Research Institute Co.,Ltd.,Beijing 100081,China; 2. Beijing Key Laboratory of Metallic Materials Characterization,Beijing 100081,China; 3. NCS Testing Technology Co.,Ltd.,Beijing 100081,China
Abstract:A large amount of niobium is added into GH4169 alloy to improve the high temperature strength. Niobium segregation is inevitably generated during the preparation process, leading to the formation of many niobium-rich phases.The morphology,quantity,size and distribution of these niobium-rich phases will have a direct impact on the mechanical properties of the material,so it is necessary to conduct the quantitative original position statistical distribution characterization of niobium-rich phases.In this paper,a quantitative statistical distribution characterization method for the full range of micron niobium-rich phases in GH4169 alloy was established based on scanning electron microscope(SEM) multi-field automatic acquisition and energy spectrum efficient analysis technology.By setting the brightness and contrast of scanning electron microscope and optimizing the acquisition time of energy spectrum counting,the good segmentation of niobium-rich particles and matrix images as well as reliable detection of micron-grade niobium-rich phases were achieved. The information of the full range of micron niobium-rich phases in the test area,including the position,morphology,size and quantity,was obtained.Moreover,the two-dimensional distribution diagrams and size frequency distribution diagrams of the niobium-rich phase were drawn.The proposed method was applied to the quantitative and statistical distribution characterization of niobium-rich phases in different areas of cross sections of GH4169 alloy bars.The evolution law of quantity and size distribution of niobium-rich phases from center to edge of bars was discussed.The quantity of niobium-rich phases showed the trend of less at center and edge but more at r/2 (r was the radius) position.The average size of niobium-rich phases at center was maximum.The average size was similar at r/2 position and edge,but it decreased at the center.This study provided reference for the subsequent improvement process to reduce the size of niobium-rich phases.
宋妍, 王蓬, 杨植岗, 周晴晴, 李冬玲, 鲍磊. GH4169合金中富铌相的定量统计分布表征方法研究及应用[J]. 冶金分析, 2024, 44(4): 1-8.
SONG Yan, WANG Peng, YANG Zhigang, ZHOU Qingqing, LI Dongling, BAO Lei. Study on quantitative statistical distribution characterization method for niobium-rich phase in GH4169 alloy and its application. , 2024, 44(4): 1-8.
[1] 董兆伟,徐奎奎,孙立辉,等.大型GH4169合金锻造棒组织缺陷分析[J].铸造技术,2021,42(3):180-183,187. DONG Zhaowei,XU Kuikui,SUN Lihui,et al.Defect analysis of large GH4169 alloy forged bar[J].Foundry Technology,2021,42(3):180-183,187. [2] 李阳,魏志坚,徐平伟,等.热变形对GH4169合金中NbC析出相尺寸形貌影响[J].稀有金属材料与工程,2020,49(5):1773-1780. LI Yang,WEI Zhijian,XU Pingwei,et al.Effect of thermal deformation on size and morphology of NbC precipitates in GH4169 alloy[J].Rare Metal Materials and Engineering,2020,49(5):1773-1780. [3] 张麦仓,郑磊,姚志浩,等.Nb含量对GH4169合金钢锭偏析规律的影响[J].热加工工艺,2013,42(10):45-49. ZHANG Maicang,ZHENG Lei,YAO Zhihao,et al.Effect of Nb content on micro-segregation evolution of GH4169 ingots[J].Hot Working Technology,2013,42(10):45-49. [4] Mannan P,Casillas G,Pereloma E V.The effect of Nb solute and NbC precipitates on dynamic and metadynamic recrystallisation in Ni-30Fe-Nb-C model alloys[J].Materials Science & Engineering A,2017(17):116-131. [5] Ye C H,Chen J S,Xu M J,et al.Multi-scale simulation of nanoindentation on cast inconel 718 and NbC precipitate for mechanical properties prediction[J].Materials Science & Engineering A,2017,662:385-394. [6] 杨金侠,魏薇,刘路,等.镍基高温合金中的初生碳化物及其强化作用[J].稀有金属材料与工程,2016,45(4):975-978. YANG Jinxia,WEI Wei,LIU Lu,et al.Primary crabide and its strengthening roles in K465 and K492 superally[J]. Rare Metal Materials and Engineering,2016,45(4):975-978. [7] Akiyama M,Kuboki T,Oikawa K,et al.Influence of carbon content and carbide morphology of carbon steels on stress-strain curve in vicinity of yield point[J].Materials Science and Technology,2002,18(11):1272-1278. [8] 刘海兰,王建国,魏志坚,等.GH4169合金环形锻件低倍组织缺陷分析[J].锻压技术,2010,35(6):19-21.LIU Hailan,WANG Jianguo,WEI Zhijian,et al.Macrostructure defect analysis of GH4169 alloy ring forging[J].Forging & Stamping Technology,2010,35(6):19-21. [9] Biswas S,Reddy G M,Mohandas T,et al.Residual stresses in inconel 718 electron beam welds[J].Journal of Materials Science,2004,39(22):6813-6815. [10] 李冬玲,乔雪璎,刘庆斌,等.GH4199镍基高温合金的析出相分析研究[J].冶金分析,2005,25(1):1-6. LI Dongling,QIAO Xueying,LIU Qingbin,et al.The analysis of the precipitate phase in Ni-base wrought superlly GH4199[J].Metallurgical Analysis,2005,25(1):1-6. [11] Li R B,Yao M,Liu W C,et al.Isolation and determination for δ, γ′ and γ′′phases in inconel 718 alloy[J].Scripta Materialia,2022,46(9):635-638. [12] Calliari I,Magrini M,Dabalà M.Microstructural evolution of udimet 720 superalloy[J].Journal of Materials Engineering and Performance,1999(8):111-115. [13] 缪乐德,张毅,杨建强,等.不同热处理状态下镍基耐蚀合金析出相的定性定量分析[J].冶金分析,2015,35(1):6-12. MAO Lede,ZHANG Yi,YANG Jianqiang,et al.Qualitative and qualitative analysis of precipitate phases in nickel-based corrosion resistant with different isothermal situation[J].Metallurgical Analysis,2015,35(1):6-12. [14] 李新城,冯晓天,朱伟兴,等.基于形态特征的钢中析出相自动分类方法[J].塑性工程学报,2009,16(2):197-202. LI Xincheng,FENG Xiaotian,ZHU Weixing,et al.The automatic classification method of precipitates in steel based on morphological features[J].Journal of Plasticity Engineering,2009,16(2):197-202. [15] 蔡文毅,唐超,杜金辉,等.大尺寸镍基高温合金铸锭夹杂物原位定量统计分布表征方法探究[J].冶金分析,2022,42(9):1-8. CAI Wenyi,TANG Chao,DU Jinhui,et al.Study on original position quantitative statistic distribution characterization method for inclusions of large size nickel-based superalloy ingot[J].Metallurgical Analysis,2022,42(9):1-8. [16] 杨文魁,宋景凌,周旋,等.铝脱氧25Mn钢圆坯中夹杂物的分布规律[J].炼钢,2023,39(4):70-81. YANG Wenkui,SONG Jingling,ZHOU Xuan,et al.Distribution of inclusions in aluminum-killed 25Mn steel round billet[J].Steelmaking,2023,39(4):70-81. [17] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 30834—2014钢中非金属夹杂物的评定和统计 扫描电镜法法[S].北京:中国标准出版社,2014. [18] LI Hai,XU Wei,WANG Zhixiu,et al.Spheroidizing behavior of the lamellar Al8CeCu4 phase in Al-14Cu-7Ce alloy[J].Rare Metal Materials and Engineering,2016,45(10):2480-2484. [19] CAI W P.Diffusion of cerium in the aluminium lattice[J].Journal of Materials Science Letters,1997,16(22):1824-1826.