Abstract:With the increasing import volume of tin ore year by year and the increasing complexity of material properties, it becomes especially important to use scientific and efficient methods to identify the properties of mineral products. The elemental composition and content, phase composition and content, and the microscopic morphology of one imported tin-containing material were analyzed by comprehensive means including X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and automatic mineral liberation analyzer (MLA). Whether this sample was solid waste was identified. The results showed that the main elements of the sample were tin, tungsten, iron, manganese, silicon, calcium and aluminum and other elements. The tin content (mass fraction, the same below) was 25.22%, which was lower than the grade requirement of YS/T 339-2011 of Tin concentrate. The tungsten content was 20.01%, which could meet the grade requirement of fine tungsten slime in YS/T 231-2015 of Tungsten concentrate. The metal minerals in the sample were scheelite, wolframite, cassiterite and a small amount of ferberite and goethite, The vein components were tourmaline and quartz, which were consistent with the composition characteristics of natural tin ore and tungsten ore. No smelting processing products with melting structure characteristics were found. The sample source may be the oxide minerals containing tungsten, tin, iron, and manganese and other polymetals after separation from the waste rock followed by crushing, separation, jigging, dewatering, shaking bed and other beneficiation processes. According to GB 34330-2017 of Identification standards for solid wastes-General rules, this sample did not belong to solid waste.The proposed method could provide technical support for solid waste identification and customs port supervision.
[1] 余淑媛, 杨俊凡, 李勇, 等.一例进口“铜精矿”的属性分析研究[J].中国无机分析化学, 2022, 12(3):81-86. YU Shuyuan, YANG Junfan, LI Yong, et al.Property analysis of one imported "copper concentrate"[J].Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(3):81-86. [2] 武素茹, 魏红兵, 谷松海, 等.主要含铁物料的固体废物属性快速鉴别[J].冶金分析, 2023, 43(3):7-15. WU Suru, WEI Hongbing, GU Songhai, et al.Rapid identification of solid waste of main iron-containing material[J].Metallurgical Analysis, 2023, 43(3):7-15. [3] 严文勋, 封亚辉, 张彰, 等.一例进口含锌物料固体废物属性鉴别探讨[J].冶金分析, 2023, 43(3):16-20. YAN Wenxun, FENG Yahui, ZHANG Zhang, et al.Discussion on identification of solid waste for one case of imported zinc-containing material[J].Metallurgical Analysis, 2023, 43(3):16-20. [4] 赵彤, 彭杰, 冯均利, 等.进口铝物料固体废物鉴别方法探讨[J].冶金分析, 2022, 42(1):31-35. ZHAO Tong, PENG Jie, FENG Junli, et al.Study on identification method of imported aluminum solid waste[J].Metallurgical Analysis, 2022, 42(1):31-35. [5] 洪秋阳, 李波, 朱志秀, 等.工艺矿物学研究用于进口铜精矿的鉴别[J].冶金分析, 2023, 43(2):8-13. HONG Qiuyang, LI Bo, ZHU Zhixiu, et al.Identification of imported copper concentrate based on process mineralogy study[J].Metallurgical Analysis, 2023, 43(2):8-13. [6] 刘婷婷, 张超.MLA矿物参数自动分析系统在矿产品掺假判定中的应用[J].现代矿业, 2016(6):59-61. LIU Tingting, ZHANG Chao.Application of mineral liberation analyzer in the case of adulteration in mineral products[J].Modern Mining, 2016(6):59-61. [7] 曹健, 谭延松, 邓圣为.湖南某复杂难选锡多金属矿工艺矿物学研究[J].矿产保护与利用, 2018, 4(2):90-94. CAO Jian, TAN Yansong, DENG Shengwei.Study on the technological mineralogy of a complex and refractory tin-polymetallic ores in Hunan[J].Conservation and Utilization of Mineral Resources, 2018, 4(2):90-94. [8] 王刚, 李晓明, 袁威, 等.中亚某铜锡矿石工艺矿物学研究[J].金属矿山, 2018(7):135-138. WANG Gang, LI Xiaoming, YUAN Wei, et al.Process mineralogy of copper and tin minerals in a state of central Asia[J].Metal Mine, 2018(7):135-138. [9] 谢菱芳, 任帅鹏, 胡耀东.缅甸某锡矿工艺矿物学研究[J].有色金属(选矿部分), 2021, 2(4):7-12. XIE Lingfang, REN Shuaipeng, HU Yaodong.Study on the technological mineralogy of a tin ore in Myanmer[J].Nonferrous Metals(Mineral Processing Section), 2021, 2(4):7-12. [10] 郝雅琼, 周炳炎, 王琪.进口含金属物料的固体废物鉴别方法研究[J].环境监测管理与技术, 2016, 28(3):6-10. HAO Yaqiong, ZHOU Bingyan, WANG Qi.Study on solid waste identification methods for imported metal-containing materials[J].The Administration and Technique of Environmental Monitoring, 2016, 28(3):6-10. [11] 中华人民共和国自然资源部.DZ/T 0201—2020 矿产地质勘察规范 钨、锡、汞、锑[S].北京:地质出版社, 2020. [12] 陈俊.锡的地球化学[M].南京:南京大学出版社, 2000:24-26. [13] 王举.低品位氧化锡矿选矿试验研究[D].昆明:昆明理工大学, 2013. [14] 张靖, 朱连明.锡矿尾矿库重金属污染特征分析[J].矿冶, 2022, 31(4):122-126. ZHANG Jing, ZHU Lianming.Analysis on heavy metal pollution characteristics of tin mine tailings pond[J].Mining and Metallurgy, 2022, 31(4):122-126. [15] 《矿产资源工业要求手册》编委会.矿产资源工业要求手册[M].北京:地质出版社, 2010:163-174. [16] 《有色金属进展》(1996—2005)编委会.有色金属资源循环利用[M].长沙:中南大学出版社, 2007:28-47. [17] 王骆宾.锡细泥矿石综合回收工艺研究[D].南昌:江西理工大学, 2016. [18] 符海.电炉锡冶炼的相组成及形成机理研究[J].世界有色金属, 2017, 13(23):13-14. FU Hai.Study on phase composition and formation mechanism of tin smelting in electric furnace[J].Metallurgical Smelting, 2017, 13(23):13-14. [19] 张永涛, 李星桥, 马宝权, 等.锡精炼废渣中有价金属锡和铜的化学形态分析[J].延安大学学报(自然科学版), 2021, 40(3):6-10. ZHANG Yongtao, LI Xingqiao, MA Baoquan, et al.Chemical speciation analysis of valuable metals tin and copper in tin slag[J].Journal of Yan′an University(Natural Science Edition), 2021, 40(3):6-10. [20] 张庆建, 岳春雷, 郭兵.固体废物属性鉴别及案例分析[M].北京:中国标准出版社, 2015:80-81. [21] 陈文平.试析锡矿选矿方法[J].世界有色金属, 2021, 7(13):56-57. CHEN Wenping.Analysis of tin ore dressing methods[J].World Nonferrous Metals, 2021, 7(13):56-57.