Research progress of laser-induced breakdown spectroscopy in metallurgical online analysis application
SUN Lanxiang1,2,3,4, WANG Wei1,2,3,4, ZHANG Peng1,2,3, XIN Yong1,2,3, QI Lifeng1,2,3
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China; 3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The on-line direct measurement of chemical composition is a long-term pursuit of metallurgical analysis, and it is also known as one of the three major problems faced by metallurgical analysis. Laser-induced breakdown spectroscopy (LIBS) technology has attracted much attention because of its unique technical advantages in terms of direct, fast, and non-contact without complicated sample preparation. The research progress of LIBS in beneficiation and online detection of molten metals was reviewed. The main existing problems were summarized, and the development in future was prospected.
[1] 王海舟.冶金分析前沿[M].北京:科学出版社,2004. [2] Noll R, C Fricke-Begemann, Brunk M, et al.Laser-induced breakdown spectroscopy expands into industrial applications[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2014,93:41-51. [3] Noll R,Fricke-Begemann C,Connemann S, et al.LIBS analyses for industrial applications-an overview of developments from 2014 to 2018[J].Journal of Analytical Atomic Spectrometry,2018,33(6):945-956. [4] Cabalin L M,Delgado T,Ruiz J,et al.Stand-off laser-induced breakdown spectroscopy for steel-grade intermix detection in sequence casting operations. At-line monitoring of temporal evolution versus predicted mathematical model[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2018,146:93-100. [5] Meinhardt C,Sturm V,Fleige R, et al.Laser-induced breakdown spectroscopy of scaled steel samples taken from continuous casting blooms[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2016,123:171-178. [6] Bengtson A.Laser induced breakdown spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals-a review of applications and analytical performance[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2017,134:123-132. [7] Hahn D W,Omenetto N.Laser-induced breakdown spectroscopy (libs), Part I: review of basic diagnostics and plasma-particle interactions:still-challenging issues within the analytical plasma community[J].Applied Spectroscopy,2010,64(12):335-366. [8] Hahn D W,N Omenetto.Laser-induced breakdown spectroscopy (libs), Part II: review of instrumental and methodological approaches to material analysis and applications to different fields[J].Applied Spectroscopy,2012,66(4):347-419. [9] 中华人民共和国国家市场监督管理总局,中国国家标准化管理委员会.GB/T 38257—2019 激光诱导击穿光谱法[S].北京:中国标准出版社,2019. [10] Wang W,Sun L X, Zhang P,et al.A method of laser focusing control in micro-laser-induced breakdown spectroscopy[J].Plasma Science & Technology,2019,21(3):1-9. [11] Fortes F J,Moros J, Lucena P,et al.Laser-induced breakdown spectroscopy[J].Analytical Chemistry,2013,85(2):640-669. [12] Sun L X,Wang W,Tian X Y,et al.Progress in research and application of micro-laser-induced breakdown spectroscopy[J].Chinese Journal of Analytical Chemistry,2018,46(10):1518-1526. [13] Fu Y,Hou Z,Li T,et al.Investigation of intrinsic origins of the signal uncertainty for laser-induced breakdown spectroscopy[J].Spectrochimica ActaPart B: Atomic Spectroscopy,2019,155:67-78. [14] Tang Y,Ma S X,Chu Y W,et al.Investigation of the self-absorption effect using time-resolved laser-induced breakdown spectroscopy[J].Optics Express,2019,27(4):4261-4270. [15] Wang W,Sun L X,Zhang P,et al.Microanalysis of molybdenum-copper stainless steel samples by picosecond laser-induced breakdown spectroscopy[J].Microchemical Journal,2020,158:1-8 [16] Tian Y,Xue B Y,Song J J,et al.Comparative investigation of laser-induced breakdown spectroscopy in bulk water using 532-and 1064-nm lasers[J].Applied Physics Express,2017,10(7):1-4. [17] Guo L B,Zhang D,Sun L X,et al.Development in the application of laser-induced breakdown spectroscopy in recent years: a review[J].Frontiers of Physics,2021,16(2):1-25. [18] Fu X L,Li G L,Dong D M.Improving the detection sensitivity for laser-induced breakdown spectroscopy:a review[J].Frontiers in Physics,2020,8:1-11. [19] Botto A,Campanella B,Legnaioli S,et al.Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review[J].Journal of Analytical Atomic Spectrometry,2019,34(1):81-103. [20] Harmon R S,Lawley C J M,Watts J, et al.Laser-induced breakdown spectroscopy-an emerging analytical tool for mineral exploration[J].Minerals,2019,9(12):1-44. [21] Rezaei F,Cristoforetti G,Tognoni E,et al.A review of the current analytical approaches for evaluating, compensating and exploiting self-absorption in laser induced breakdown spectroscopy[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2020,169:1-25. [22] Winefordner J D,Gornushkin I B,Correll T,et al.Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star[J].Journal of Analytical Atomic Spectrometry,2004,19(9):1061-1083. [23] Blake D F,Morris R V,Kocurek G,et al.Curiosity at gale crater, mars: characterization and analysis of the rocknest sand shadow[J].Science,2013,341(6153):1-7. [24] Manrique J A,Lopez-Reyes G,Cousin A,et al.SuperCam calibration targets: design and development[J].Space Science Reviews,2020,216(8):1-27. [25] Wiens R C,Maurice S,Robinson S H,et al.The SuperCam instrument suite on the NASA mars 2020 rover: body unit and combined system tests[J]. Space Science Reviews,2021,217(1):1-87. [26] Wan X,Li C,Wang H,et al.Design, function, and implementation of China's first LIBS instrument (MarSCoDe) on the Zhurong mars rover[J].Atomic Spectroscopy,2021.DOI:10.46770/AS.2021.608. [27] Eseller K E,Tripathi M M,Yueh F Y,et al.Elemental analysis of slurry samples with laser induced breakdown spectroscopy[J].Applied Optics,2010,49(13):21-26. [28] Death D L,Cunningham A P,Pollard L J.Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2008,63(7):763-769. [29] Death D L,Cunningham A P,Pollard L J.Multi-element and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2009,64(10):1048-1058. [30] Ayyalasomayajula K K,Dikshit V,Yueh F Y,et al.Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy[J].Analytical and Bioanalytical Chemistry,2011,400(10):3315-3322. [31] Speranca M A,Pomares-Alfonso M S,Pereira E R.Analysis of Cuban nickeliferous minerals by laser-induced breakdown spectroscopy (LIBS): non-conventional sample preparation of powder samples[J].Analytical Methods, 2018,10(5):533-540. [32] Barrette L,Turmel S.On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2001,56(6):715-723. [33] Oh S Y,Miller T,Yueh F Y,et al.Comparative study of laser-induced breakdown spectroscopy measurement using two slurry circulation systems[J].Applied Optics,2007,46(19):4020-4025. [34] Michaud D,Proulx E,Chartrand J G,et al.Shooting slurries with laser-induced breakdown spectroscopy: sampling is the name of the game[J].Applied Optics,2003,42(30):6179-6183. [35] Michaud D,Leclerc R,Proulx E.Influence of particle size and mineral phase in the analysis of iron ore slurries by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2007, 62(12):1575-1581. [36] Cheng X,Yang X,Zhu Z,et al.On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy[J].Applied Optics,2017,56(33):9144-9149. [37] Guo L B,Cheng X,Tang Y,et al.Improvement of spectral intensity and resolution with fiber laser for on-stream slurry analysis in laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2019,152:38-43. [38] 尚栋,孙兰香,齐立峰,等.循环变量筛选非线性偏最小二乘的LIBS铁矿浆定量分析[J].中国激光,2021,48(21):2111001.DOI:10.3788/cjl202148.2111001. SHANG Dong,SUN Lanxiang,QI Lixiang,et al.Quantitative analysis of LIBS iron ore slurry based on cyclic variable filtering and nonlinear partial least squares[J].Chinese Journal of Lasers,2021,48(21):2111001. [39] Dong H,Sun L,Qi L,et al.A lightweight convolutional neural network model for quantitative analysis of phosphate ore slurry based on laser-induced breakdown spectroscopy[J].Journal of Analytical Atomic Spectrometry,2021,36(11):2528-2535. [40] Runge E F,Bonfigli S,Bryan F R.Spectrochemical analysis of molten metal using a pulsed laser source[J]. Spectrochimica Acta,1966,22(9):1678-1680. [41] Gruber J,J Heitz,H Strasser,et al.Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2001,56(6):685-693. [42] Gruber J,Heitz J,Arnold N,et al.In situ analysis of metal melts in metallurgic vacuum devices by laser-induced breakdown spectroscopy[J].Applied Spectroscopy,2004,58(4):457-462. [43] Palanco S,Conesa S,Laserna J J.Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer[J].Journal of Analytical Atomic Spectrometry,2004,19(4):462-467. [44] Aragon C,Aguilera J A,Campos J.Determination of carbon content in molten steel using laser-induced breakdown spectroscopy[J].Applied Spectroscopy,1993,47(5):606-608. [45] Mathy, G Monfort,Vanderheyden B,等.激光诱导击穿光谱法连续测定高炉流道中的组分和温度[J].冶金分析,2011,31(10):21-23. Mathy,G Monfort,B Vanderheyden,et al,Measurement of composition and temperature in blast furnace runners by using laser induced breakdown spectroscopy[J].Metallurgical Analysis,2011,31(10):21-23. [46] Sun L X, Xin Y,Cong Z B, et al.Online compositional analysis of molten steel by laser-induced breakdown spectroscopy[J].Advanced Materials Research,2013,694-697:1260-1266. [47] 孙兰香,于海斌,辛勇,等.基于激光诱导击穿光谱的钢液成分在线监视[J].中国激光,2011,38(9):1-6. SUN Lanxiang,YU Haibin,XIN Yong,et al.On-line monitoring of molten steel compositions by laser-induced breakdown spectroscopy[J].Chinese Journal of Lasers,2011,38(9):1-6. [48] Zhao T,Fan Z,Lian F,et al.Using laser-induced breakdown spectroscopy on vacuum alloys-production process for elements concentration analysis[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2017,137:64-69. [49] Cui M,Y Deguchi,C Yao,et al.Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2020,167:1-7. [50] Hubmer G,Kitzberger R,Morwald K.Application of LIBS to the in-line process control of liquid high-alloy steel under pressure[J].Analytical and Bioanalytical Chemistry,2006,385(2):219-224. [51] Peter L,Sturm V,Noll R.Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet[J].Applied Optics,2003,42(30):6199-6204. [52] Sun L,Yu H,Cong Z,et al.In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a Cassegrain telescope[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2015,112:40-48. [53] Rai A K,Yueh F Y,Singh J P,et al.High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents[J].Review of Scientific Instruments,2002,73(10):3589-3599. [54] Saro R D,Weisberg A,Craparo J.In situ, real time measurement of melt constituents in the aluminum, glass, and steel industries[R].In Final Report Prepared for The U.S. Department of Energy Under Award Number DE-FC02-99CH10974,2005. [55] Hudson S W,J Craparo,R De Saro,et al.Inclusion detection in aluminum alloys via laser-induced breakdown spectroscopy[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science, 2018,49(2):658-665. [56] Zeng Q,Pan C,Li C,et al.Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2018,142:68-73. [57] Gudmundsson S H,J Matthiasson,B M Bjornsson,et al.Quantitative in-situ analysis of impurity elements in primary aluminum processing using laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2019,158:1-5 [58] Xin Y,L X Sun,Z J Yang,et al.In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system[J].Frontiers of Physics,2016,11(5):1-7. [59] 辛勇,李洋,李伟,等.基于LIBS技术在线监测熔融铝水的元素成分[J].光子学报,2018,47(8):1-8. XIN Yong,LI Yang,LI Wei,et al.In-situ analysis of molten aluminum by laser-induced breakdown spectroscopy system[J].Acta Photonica Sinica,2018,47(8):1-8. [60] 辛勇,李洋,蔡振荣,等.激光诱导击穿光谱液态金属成分在线分析仪在线监测熔融铝液中元素成分[J].冶金分析, 2019,39(1):15-20. XIN Yong,LI Yang,CAI Zhenrong,et al.On-line monitoring of elemental composition in molten aluminum by laser-induced breakdown spectroscopy online analyzer for liquid metal composition[J].Metallurgical Analysis,2019,39(1):15-20. [61] 潘从元,赵荣升,徐勇,等.激光诱导击穿光谱设备在线冰铜成分检测应用进展[J].冶金分析,2021,41(1):41-46. PAN Congyuan,ZHAO Rongsheng,XU Yong,et al.Application progress of online composition analysis of matte by laser-induced breakdown spectroscopy[J].Metallurgical Analysis,2021,41(1):41-46. [62] Simonnet M,Jacquesbeyssen S,Mougeolle J M.In situ analysis of hot dip galvanizing baths (Zincana)[J].Birth Defects Research Part B:Developmental & Reproductive Toxicology,2009,86(2):98-107.