Determination of molybdenum in geological sample by flame atomic absorption spectrometry with perchloric acid-sucrose medium
REN Jinxin1, YANG Muqing*2, BAN Junsheng1
1. Henan Second Geological Brigade Co.,LTD.,Zhengzhou 450000,China; 2. Henan Non-ferrous Geology and Mineral Resources Group Co., LTD.,Zhengzhou 450000,China
Abstract:The accurate and rapid determination of molybdenum content in geological samples is of great significance for the development and utilization of molybdenum ore,geological scientific research,and many other fields.Since molybdenum is an element which is hardly ionized, the determination method by flame atomic absorption spectrometry(FAAS) usually has low sensitivity and high limit of detection.The sampling of redox system can increase the air-acetylene flame temperature,thus enhancing the absorbance sensitivity of molybdenum.On the basis of this principle,a method for the determination of molybdenum(0.002%) in geological samples by FAAS was established using perchloric acid as the oxidant and sucrose as the reducing agent.Under the optimized experimental conditions,the mass concentration of molybdenum in range of 2-20 μg/mL had a good linear relationship with the corresponding absorbance,with a correlation coefficient of 0.999 8.The sensitivity was 0.010 6 mL/μg,the limit of detection was 0.000 7%,and the limit of quantification was 0.002%.The content of molybdenum in certified reference materials of molybdenum ore for composition analysis was determined according to the experimental method.The maximum relative error between the found results and the certified values were all less than the relative error tolerance(YB) specified in DZ/T 0130-2006 The Specification of Testing Quality Management for Geological Laboratories.The relative standard deviations(RSD, n=9) of the determination results were between 1.5% and 8.2%.
[1] 中华人民共和国工业和信息化部.YS/T 555.1—2009 钼精矿化学分析方法 钼量的测定 钼酸铅重量法[S].北京:中国标准出版社,2010. [2] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 14506.25—2010 硅酸盐岩石化学分析方法 第25部分:钼和钨量测定[S].北京:中国标准出版社,2010. [3] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 14353.9—2010 铜矿石、铅矿石和锌矿石化学分析方法 第9部分:钼量测定[S].北京:中国标准出版社,2010. [4] 黄仁忠.三乙醇胺增敏火焰原子吸收光谱法测定地质样品中的钼[J].岩矿测试,2009,28(6):587-589. HUANG Renzhong.Determination of molybdenum in geological samples by triethanolamine sensitizer air acetylene flame atomic absorption spectrometry[J].Rock and Mineral Analysis,2009,28(6):587-589. [5] 李枚枚,王雅静.混合表面活性剂存在下火焰原子吸收光谱法测定合金钢中的钼[J].分析化学,2000,28(4):428-431. LI Meimei,WANG Yajing.Determination of molybdenum in alloy steel by flame atomic absorption spectrometry with mixed surfactant[J].Chinese Journal of Analytical Chemistry,2000,28(4):428-431. [6] 李静.微波消解-火焰原子吸收法测定土壤中的钼[J].干旱环境监测,2012,26(4):196-198. LI Jing.Determination of molybdenum in soil by microwave digestion-flame atomic absorption spectrophotometric[J].Arid Environmental Monitoring,2012,26(4):196-198. [7] 贺攀红,龚治湘.火焰原子吸收光谱法测定矿石中微量钼[J].理化检验(化学分册)(Physical Testing and Chemical Analysis(Part B:Chemical Analysis)),2012,48(3):360-361. [8] 马艳芳,池泉,韩红印,等.富氧空气-乙炔火焰原子吸收光谱法测定地质样品中的微量钼[J].光谱实验室,2001,18(5):633-636. MA Yanfang,CHI Quan,HAN Hongyin,et al.Determination of trace molybdenum in geological samples by air mixed with oxygen acetylene flame atomic absorption spectrometry[J].Chinese Journal of Spectroscopy Laboratory,2001,18(5):633-636. [9] 程相恩,王风,梁德俊,等.混合表面活性剂增敏火焰原子吸收测定地质样品中的钼[J].中国钼业,2008,32(3):30-32. CHENG Xiang′en,WANG Feng,LIANG Dejun,et al.Determination of molybdenum in geological samples by flame atomic absorption spectrometry with mixed surfactant[J].China Molybdenum Industry,2008,32(3):30-32. [10] 杨萍,党铭铭,郭永艳,等.五酸消解-电感耦合等离子体原子发射光谱法测定矽卡岩型多金属钨矿中钨、钼、铋的含量[J].理化检验(化学分册),2022,58(7):773-776. YANG Ping,DANG Mingming,GUO Yongyan,et al.Determination of W,Mo and Bi in skarn-type polymetallic tungsten ore by ICP-AES with penta acid digestion[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2022,58(7):773-776. [11] 王文芳,汪永顺.混合酸溶-电感耦合等离子体发射光谱(ICP-OES)法同时测定多金属矿石中铜铅锌钼[J].中国无机分析化学,2023,13(3):256-262. WANG Wenfang,WANG Yongshun.Simultaneous determination of copper,lead,zinc and molybdenum in polymetallic ores by inductively coupled plasma-optical emission spectrometry with mixed acid dissolution[J].Chinese Journal of Inorganic Analytical Chemistry,2023,13(3):256-262. [12] 何鹏飞,李景滨,唐伟,等.高温熔融-电感耦合等离子体发射光谱法测定钼废渣中钼[J].化学分析计量,2022,31(4):29-32. HE Pengfei,LI Jingbin,TANG Wei,et al.Determination of molybdenum in molybdenum waste residue by high temperature melting-inductively coupled plasma emission spectrometry[J].Chemical Analysis and Meterage,2022,31(4):29-32. [13] 赖永锋,吴伟明.石墨消解-电感耦合等离子体原子发射光谱法测定云南某地煤尾矿中钼[J].冶金分析,2023,43(3):52-56. LAI Yongfeng,WU Weiming.Determination of molybdenum in coal tailing from Yunnan Province by inductively coupled plasma atomic emission spectrometry with graphite digestion[J]. Metallurgical Analysis,2023,43(3):52-56. [14] 张艳,沈健.微波消解-电感耦合等离子体原子发射光谱法测定镍基合金Inconel 625中铬钼铌[J].冶金分析,2023,43(2):73-79. ZHANG Yan,SHEN Jian.Determination of chromium,molybdenum and niobium in nickel-based alloy Inconel 625 by inductively coupled plasma atomic emission spectrometry after microwave digestion[J].Metallurgical Analysis,2023,43(2):73-79. [15] 任金鑫,杨牧青,班俊生.氧化还原体系溶液进样对原子吸收火焰的增温作用[J].化学分析计量,2023,32(5):38-42. REN Jinxin,YANG Muqing,BAN Junsheng.Temperature increasing effect of atomic absorption flame by redox system solution injection[J].Chemical Analysis and Meterage,2023,32(5):38-42. [16] 贾云海,孙晓飞,张帆.用相对标准偏差和相对极差及测量极值比例确定分析检出限和定量限[J].冶金分析,2021,41(1):1-12. JIA Yunhai,SUN Xiaofei,ZHANG Fan.Determination of LOD and LOQ with relative standard deviation and relative range or ratio of maximum and minimum[J].Metallurgical Analysis,2021,41(1):1-12. [17] 中华人民共和国国土资源部.DZ/T 0130—2006 地质矿产实验室测试质量管理规范[S].北京:中国标准出版社,2006.