Comparison of two evaluation methods for measurement uncertainty in component analysis and validation of Top-down method
XING Yan1, DU Zhenyu2,3, FAN Shuang4, LI Yuwu2,3,4, YANG Zhen1, ZHANG Linlin*1,5
1. Shaanxi Province Environmental Monitoring Station,Xi'an 710061,China; 2. Environmental Development Centre of the Ministry of Ecology and Environment, Beijing 100029,China; 3. National Research Center for Environmental Analysis and Measurements, Beijing 100029,China; 4. Guohuan Oasis (Gu'an) Environmental Technology Co., Ltd., Langfang 065500,China; 5. China National Environmental Monitoring Centre,Beijing 100012,China
Abstract:RB/T 141-2018 Evaluation of measurement uncertainty in the chemical testing field -Appling quality control and method validation data to evaluate measurement uncertainty is the Top-down method standard for measurement uncertainty evaluation, which is vigorously promoted by China National Accreditation Service for Conformity Assessment in recent years. The principle of this method is that under the condition of intermediate precision measurement, various factors affecting the test results of component analysis are summed up as ‘bias value’ and ‘intermediate precision (standard deviation)’ of the internal quality control data of the laboratory, and these two components are combined as the estimation of the uncertainty of the test results. The method is simple and easily operated. The results of two methods (i.e., Top-down method and GUM method) were compared based on the data of 38 evaluation examples in The Summary of Mathematical Statistics and Uncertainty Evaluation in Component Analysis (which was the training material of National Training Committee for Analyzing & Testing Personnel, NTC) and in some literatures. In order to make full use of the literature data and facilitate the comparison of methods, the ‘bias value’ and ‘intermediate precision components’ in the calculation formula of Top-down method were calculated by fitting error of calibration curve and repeated measurement precision. The results showed that the results of two methods were comparable. The results of GUM method were divided by the results of Top-down method, and the average ratio in robust statistics was 0.91. The results of Top-down method were slightly larger than those of GUM method. The extended uncertainty of 14 standard samples measured in laboratory was evaluated by the Top-down method, and then compared with the extended uncertainty of the standard value. It was found that the average value of ratio was 1.05 when the extended uncertainty of the standard value was used as basis, which verified the applicability of the Top-down method. Finally, the characteristics and application scope of two methods were discussed. It was expected that the study could help technicians in laboratories to skillfully use the Top-down method and apply it to laboratory quality control data, and moreover, to compare and verify the results with the GUM method of the same testing items.
杏艳, 杜祯宇, 范爽, 李玉武, 杨震, 张霖琳. 成分分析中测量不确定度的两种评定方法比较及Top-down法有效性验证[J]. 冶金分析, 2023, 43(4): 10-17.
XING Yan, DU Zhenyu, FAN Shuang, LI Yuwu, YANG Zhen, ZHANG Linlin. Comparison of two evaluation methods for measurement uncertainty in component analysis and validation of Top-down method. , 2023, 43(4): 10-17.
[1] 中国合格评定国家认可委员会.CNAS-CL01-G003:2021测量不确定度的要求[EB/OL].(2021-11-30)[2022-11-1].北京:中国合格评定国家认可委员会秘书处,2021.https://www.cnas.org.cn/images/rkgf/sysrk/rkyyzz/2021/11/16/1637025940061073586.pdf. [2] 中国合格评定国家认可委员会.CNAS-GL006:2018化学分析中不确定度的评估指南[EB/OL].(2019-03-15) [2022-11-1].北京:中国合格评定国家认可委员会秘书处,2018.https://www.cnas.org.cn/images/rkgf/sysrk/rkzn/2019/04/18/84DF453E2EE8DB5F212967680DA1A 89A.pdf. [3] 国家认证认可监督管理委员会.RB/T 030—2020化学分析中不确定度的评估指南[S].北京:中国标准出版社,2020. [4] 国家质量监督检验检疫总局计量司.JJF 1059.1—2012测量不确定度评定与表示[S].北京:中国标准出版社,2012. [5] The international organization for standardization.ISO 11352:2012 Water quality-estimation of measurement uncertainty based on validation and quality control data[S]. [6] 国家认证认可监督管理委员会.RB/T 141—2018化学检测领域测量不确定度判定 利用质量控制和方法确认数据评定不确定度[S].北京:中国标准出版社,2018. [7] 林露,胡勇杰,韩健健.两种化学检测领域测量不确定度评定方法比较[J].中国纤检,2019(4):64-65. LIN Lu,HU Yongjie,HAN Jianjian.Comparison of two evaluation methods of measurement uncertainty in chemical detection field[J].China Fiber Inspection,2019(4):64-65. [8] 叶秋明,赵鉴,曾次元.两种不确定度评定方法在金属价态分析中的应用[J].分析仪器,2015(4):58-64. YE Qiuming,ZHAO Jian,ZENG Ciyuan.Application of two uncertainty evaluation methods in valence state analysis of metals[J].Analytical Instruments,2015(4):58-64. [9] 金建华,杨锐,储永俊.火花发射光谱法测定钢中锰含量三种测量不确定度方法的比较[J].宝钢技术,2022(1):10-14. JIN Jianhua,YANG Rui,CHU Yongjun.Comparison of three methods for measurement uncertainty evaluation for determination of manganese content in steel by spark emission spectrometry[J].Baosteel Technology,2022(1):10-14. [10] 臧慕文,柯瑞华.全国分析检测人员能力培训委员会系列培训教材,成分分析中的数理统计及不确定度评定概要[M].北京:中国标准出版社,2012. [11] 全国统计方法应用标准化技术委员会. GB/T 28043-2011利用实验室间比对进行能力验证的统计方法[S].北京:中国标准出版社,2011. [12] Analytical Methods Committee. Robust statistics: A method of coping with outliers[R].AMC Technical Brief,2001. [13] 佟艳春.拉伸试验能力验证结果的稳健统计指定值及其不确定度[J].理化检验(物理分册),2010,46(2):70-83. TONG Yanchun.Robust statistical assigned value and its uncertainty of proficiency testing results of tensile tests[J].Physical Testing and Chemical Analysis(Part A:Physical Testing),2010,46(2):70-83. [14] 张楠.水中总磷测量不确定度评定[J].高校实验室工作研究,2011(1):101-102. ZHANG Nan.Measurement uncertainty evaluation of total phosphorus in water[J].Gaoxiao Shiyanshigongzhuo Yanjiu,2011(1):101-102. [15] 孙爱琴,陈浩凤,王烨,等.石墨炉原子吸收光谱法测定农业地质调查土壤样品中镉的不确定度评定[J].岩矿测试,2007,26(1):51-54. SUN Aiqin,CHEN Haofeng,WANG Ye,et al.Uncertainty evaluation of measurement results for the determination of cadmium in soil samples by graphite furnace atomic absorption spectrometry[J].Rock and Mineral Analysis,2007,26(1):51-54. [16] 周良,成鹏.4-氨基安替比林-氯仿萃取法测定地表水中挥发酚的不确定度分析[J].科教前沿,2011(5):488-490. ZHOU Liang,CHENG Peng.Uncertainty analysis of determination of volatile phenol in surface water by 4-aminoantipyrine-chloroform extraction[J].Frontier of Science and Education,2011(5):488-490. [17] 李彤彤.EDTA 滴定法测定水中总硬度的不确定度评定[J].广东化工,2009,36(6):179-180,268. LI Tongtong.Evaluation of uncertainty in determination of total hardness in water by EDTA titration [J].Guangdong Chemical Industry,2009,36(6):179-180,268. [18] 黄小锦.用间歇流动化学分析仪分析水中的总氰化物浓度的不确定度评定[J].现代测量与实验室管理,2006(5):28-29. HUANG Xiaojin.Uncertainty evaluation of total cyanide concentration in water by intermittent flow chemical analyzer[J].Modern Measurement and Laboratory Management,2006(5):28-29. [19] 袁力.碘量法测定水中溶解氧的不确定度评定[J].现代测量与实验室管理,2005(2):30-32. YUAN Li.Uncertainty evaluation of dissolved oxygen in water by iodometry[J].Modern Measurement and Laboratory Management,2005(2):30-32. [20] 梁巧玲,吴银笑,吴卓智.碱性过硫酸钾氧化-钼酸铵分光光度法测定水中的总磷及其不确定度的评定[J].环境科学与管理,2010,35(9):148-151. LIANG Qiaoling,WU Yinxiao,WU Zhuozhi.Determination of total phosphorus in water by alkaline potassium persulfate oxidation-ammonium molybdate spectrophotometry and evaluation of its uncertainty[J].Environmental Science and Management,2010,35(9):148-151. [21] 李英奇.紫外分光光度法测定水中硝酸盐氮的不确定度评定[J].河南化工,2010,27(4):19-21. LI Yingqi.Evaluation of uncertainty in determination of nitrate in water by ultraviolet spectrophotometry[J].Henan Chemical Industry,2010,27(4):19-21. [22] 钟志雄,姚敬.离子色谱法测定水中氟、氯、硝酸盐氮和硫酸根的不确定度分析[J].中国卫生检验杂志,2004,14(6):705-707. ZHONG Zhixiong,YAO Jing.Uncertainty analysis of determination of fluorine,chlorine,nitrate nitrogen and sulfate in water by ion chromatography[J].Chinese Journal of Health Laboratory Technology,2004,14(6):705-707. [23] 王巧玲,于玥,朱明达,等.火焰原子吸收光谱法测定铜精矿中银含量的测量不确定度评定[J].岩矿测试,2007,26(6):477-480. WANG Qiaoling,YU Yue,ZHU Mingda,et al.Uncertainty evaluation on measurement results for the determination of silver in copper concentrates by flame atomic absorption spectrometry[J].Rock and Mineral Analysis,2007,26(6):477-480. [24] 王玉功,李国兵,拉毛吉,等.石墨炉原子吸收光谱法测定味精中痕量铅的不确定度评定[J].岩矿测试,2009,28(2):165-168. WANG Yugong,LI Guobing,LA Maoji,et al.Uncertainty evaluation of determination results for trace lead in monosodium glutamate by graphite furnace atomic absorption spectrometry[J].Rock and Mineral Analysis,2009,28(2):165-168. [25] 侯鹏飞,蔡玉曼,陆丽君.酸碱滴定法测定天然石膏矿中碳酸盐的不确定度评定[J].岩矿测试,2008,27(3):211-214. HOU Pengfei,CAI Yuman,LU Lijun.Uncertainty evaluation of analytical results for carbonate in natural gypsum samples by acid-base titration method[J].Rock and Mineral Analysis,2008,27(3):211-214. [26] 蔡玉曼.硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定[J].岩矿测试,2008,27(2):123-126. CAI Yuman.Evaluation of the uncertainty in determination of silicon in titanite by silicomolybdic blue spectrophotometry[J].Rock and Mineral Analysis,2008,27(2):123-126. [27] 冯净,王海娇,何超君,等.高效液相色谱法测定地下水中苯并(a)芘的不确定度评定[J].岩矿测试,2011,30(5):617-622. FENG Jing,WANG Haijiao,HE Chaojun,et al.Uncertainty evaluation for the determination of benzo(a)-pyrenees in groundwater samples by high performance liquid chromatography[J].Rock and Mineral Analysis,2011,30(5):617-622. [28] The international organization for standardization.ISO Guide 33:2015 Reference materials-Good practice in using reference materials[S]. [29] 狄一安,孙海容,李玉武,等.用质控图和稳健统计-迭代法评估环境检测实验室测量不确定度[J].岩矿测试,2014,33(1):57-66. DI Yi'an,SUN Hairong,LI Yuwu,et al.Evaluation of measurement uncertainty in an environmental test laboratory by quality assurance,control charting and robust statistics[J].Rock and Mineral Analysis,2014,33(1):57-66. [30] 周瑞,狄一安,李玉武,等.用质控图法和稳健统计法评估固体样品汞含量热裂解-原子吸收法测量不确定度[J].中国无机分析化学,2015,5(2):1-8. ZHOU Rui,DI Yi'an,LI Yuwu,et al.Evaluation of measurement uncertainty of mercury in solids based on thermal decomposition amalgamation and atomic absorption spectrophotometry by quality assurance and control charting and robust statistics[J].Chinese Journal of Inorganic Analytical Chemistry,2015,5(2):1-8. [31] 刘攀,聂富强,董俊轩.Top-down技术评估钢中氧的测量不确定度[J].福建分析测试,2015,24(6):38-44. LIU Pan,NIE Fuqiang,DONG Junxuan.Evaluation of measurement uncertainty for the determination of oxygen in steel using‘Top-down’technique[J].Fujian Analysis & Testing,2015,24(6):38-44.