Determination of silicon dioxide in iron ore with high content silicon by gravimetric method combined with inductively coupled plasma atomic emission spectrometry
XUAN Jianwen, HE Yingxian, LIN Qixuan, XIAO Dahui*
Technology Center of Guangzhou Customs,Guangzhou 510623,China
Abstract:During the determination of silicon dioxide in iron ore with high content silicon by gravimetric method specified in standard GB/T 6730.10-2014, the high-temperature dehydration and filtration should be repeated to recover the soluble silicon in solution. As a result, the detection time is usually long. In order to shorten the detection time, the content of silicon dioxide in iron ore with high content silicon was determined by gravimetric method combined with inductively coupled plasma atomic emission spectrometry (ICP-AES). The iron ore sample with high content silicon was treated by acid dissolution, and the silicon-containing precipitates were treated by alkali fusion and acidification. Most silicon in sample was converted to silicic acid. After high-temperature dehydration, the generated silicon dioxide could react with hydrofluoric acid to form silicon tetrafluoride gas. The content of silicon could be calculated by the weight loss. Meanwhile, a little amount of silicon dissolved in the filtrate was determined by ICP-AES. The content of silicon dioxide in sample was the total silicon contents by gravimetric method and ICP-AES. The contents of silicon dioxide in two iron ore samples were determined according to the experimental method. It was found that the proportion of soluble silicon in the filtrate ranged from 0.39% to 2.0%. The proposed method was applied for the determination of silicon dioxide in three certified reference materials and seven international proficiency test samples of iron ore (the mass fraction of silicon dioxide was in range of 9.595%-50.01%). The found results were consistent with the certified values/reference values. The repeatability of the results could meet the requirements in GB/T 6730.10-2014.
禤健文, 何颖贤, 林琦渲, 萧达辉. 重量法-电感耦合等离子体原子发射光谱法联用测定高硅铁矿中二氧化硅[J]. 冶金分析, 2023, 43(2): 59-64.
XUAN Jianwen, HE Yingxian, LIN Qixuan, XIAO Dahui. Determination of silicon dioxide in iron ore with high content silicon by gravimetric method combined with inductively coupled plasma atomic emission spectrometry. , 2023, 43(2): 59-64.
[1] 董斌斌,黎广荣,郭福生,等.磁铁矿中硅的赋存状态研究进展:兼论新疆雅满苏铁矿床中磁铁矿晶体化学特征[J].高校地质学报,2017,23(2):213-226. DONG Binbin,LI Guangrong,GUO Fusheng,et al.Recent progresses on occurrence of silicon in magnetite: crystal characteristics of magnetite from yanmansu skarn-type iron deposit in xinjiang province[J].Geological Journal of China Universities,2017,23(2):213-226. [2] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 32545—2016 铁矿石产品等级的划分[S].北京:中国标准出版社,2016. [3] 万绍蒙,李劲.高炉炼铁含硅量的动态预测[J].科技和产业,2021,21(2):249-255. WAN Shaomeng,LI Jin.Dynamic prediction of silicon content in blast furnace ironmaking[J].Science Technology and Industry,2021,21(2):249-255. [4] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 6730.10—2014 铁矿石 硅含量的测定 重量法[S].北京:中国标准出版社,2014. [5] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 6730.9—2016 铁矿石 硅含量的测定 硫酸亚铁铵还原-硅钼蓝分光光度法[S].北京:中国标准出版社,2016. [6] 戴伟杰,孙东挺,曹汉青,等.分光光度法测定铁矿石中硅含量的研究[J].冶金与材料,2020,40(4):54-56. DAI Weijie,SUN Dongting,CAO Hanqing,et al.Study on the determination of silicon content in iron ore by spectrophotometry[J].Metallurgy and Materials,2020,40(4):54-56. [7] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 6730.63—2006 铁矿石 铝、钙、镁、锰、磷、硅和钛含量的测定 电感耦合等离子体发射光谱法[S].北京:中国标准出版社,2007. [8] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GBT 6730.62—2005铁矿石钙、硅、镁、钦、磷、锰、铝和钡含量的测定 波长色散X射线荧光光谱法[S].北京:中国标准出版社,2006. [9] 张家相,吴丽萍,喻娟.碱熔ICP-AES法测定铁矿石中CaO,MgO,SiO2等8组分[J].铸造技术,2008,29(3):404-406. ZHANG Jiaxiang,WU Liping,YU Juan. Determination of ingredients in iron ore using alkali fusion ICP-AES[J].Foundry Technology,2008,29(3):404-406. [10] 沈福贵,周扬杰,林凌立,等.基于控制图评定实验室ICP法测定铁矿石中硅含量的不确定度[J].福建冶金,2020,49(3):41-44. SHEN Fugui,ZHOU Yangjie,LIN Lingli,et al.Evaluation of uncertainty in ICP determination of silicon content in iron ore base on control chart[J].Fujian Metallurgy,2020,49(3):41-44. [11] 徐莺,余旭辉.罗布莎某铬铁矿工艺矿物学研究及对选矿工艺的影响[J].金属矿山,2018(6):103-108. XU Ying,YU Xuhui.Study on process mineralogy of chromite ore from luobusha deposit and its influence on mineral processing[J].Metal Mine,2018(6):103-108. [12] 张凤华,于洋,黄伟.印度尼西亚某褐铁矿的工艺矿物学特征及提铁降杂试验研究[J].中国矿业,2016,25(6):109-113. ZHANG Fenghua,YU Yang,HUANG Wei. Research into process mineralogy characteristic and beneficiation tests for a limonite ore from Indonesia[J].China Mining Magazine,2016,25(6):109-113.