Abstract:In order to understand the development of analytical instruments in China and promote the progress of quantitative detection technology in the field of metallurgical analysis, the development process, basic principle and main structure of several basic quantitative detecting instruments, including inductively coupled plasma optical emission spectrometer (ICP-OES), inductively coupled plasma mass spectrometer (ICP-MS), X-ray fluorescence spectrometer (XRF) and laser induced breakdown spectroscopy (LIBS), which were exhibited in Beijing Conference and Exhibition on Instrumental Analysis (BCEIA), were summarized and reviewed. The advantages, characteristics and application effects of these detection instruments were discussed from the perspective of the analysis and detection personnel. The development trend of quantitative analysis and detection technologies were prospected. The development prospects of new high-end scientific instruments based on quantitative detection instruments were proposed. Secondly, laser ablation-inductively coupled plasma mass spectrometer (LA-ICP-MS), glow discharge mass spectrometer (GD-MS), electron microprobe (EPMA) and other extended combined detection instruments were as examples to introduce the main features and applications of the equipment. Finally, it was concluded that LA-ICP-MS became the common technique for the analysis of trace elements in solid samples. GD-MS technique was an important approach for the analysis of trace elements. EPMA technology had the advantages of high compatibility in combination with other instruments, it had become a universal tool of analysis although there were certain defects in the process of use. The quantitative analysis and detection technology in China is developing towards the direction of on-site, specialization and standardization.
李华昌, 王东杰, 冯先进. 我国冶金分析定量检测仪器的发展趋势[J]. 冶金分析, 2022, 42(8): 1-12.
LI Huachang, WANG Dongjie, FENG Xianjin. Development trend of quantitative detecting instruments for metallurgical analysis in China. , 2022, 42(8): 1-12.
[1] 中国分析测试协会.第十九届北京分析测试学术报告会暨展览会会后报告[C]//全球分析科学与生化技术博览会BCEIA.北京,2021. [2] 孔美玲,姜振军.有色金属材料检测仪器研究[J].世界有色金属,2020(23):7-8. KONG Meiling,JIANG Zhenjun.Research on testing instrument for nonferrous metal materials[J].World Nonferrous Metals,2020(23):7-8. [3] 潘虹.浅析分析检测技术在有色金属行业的应用[J].世界有色金属,2019(19):237,239. PAN Hong.Analysis of the application of analytical detection technology in non-ferrous metals industry[J].World Nonferrous Metals,2019(19):237,239. [4] 杨开放,黎莉,郭卿.电感耦合等离子体发射光谱(ICP-OES)法在非金属元素测定中的应用[J].中国无机分析化学,2016,6(4):15-19. YANG Kaifang,LI Li,GUO Qing.Application of ICP-OES in determination of non-metal element [J].Chinese Journal of Inorganic Analytical Chemistry,2016,6(4):15-19. [5] 王东杰. REx(CO3)y冶炼废水的膜电解处理及资源化研究[D].北京:北京科技大学,2020. [6] 王琦,王雅兰,卢娟娟,等.国产ICP-OES仪器验证与综合评价[J].检测仪器,2021(S1):136-138. WANG Qi,WANG Yalan,LU Juanjuan,et al.Verification and comprehensive evaluation of domestic ICP-OES instrument[J].Test Instrumentation,2021(S1):136-138. [7] Houk R S, Fassel V A, Flesch G D,et al.Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements[J].Analytical Chemistry,1980,52(14):2283-2289. [8] 胡昊.ICP-MS多元素分析稳定性探究[J].福建分析测试,2020,29(4):36-38. HU Hao.Exploration of multi-element analysis stability with ICP-MS[J].Fujian Analysis & Testing,2020,29(4):36-38. [9] 张更宇,吴超,邓宇杰.电感耦合等离子体质谱(ICP-MS)联用技术的应用及展望[J].中国无机分析化学,2016,6(3):19-26. ZHANG Gengyu,WU Chao,DENG Yujie.Application and outlook of the hyphenated ICP-MS technique[J].Chinese Journal of Inorganic Analytical Chemistry,2016,6(3):19-26. [10] 韩建华.ICP-MS碰撞反应池的研究及离子透镜的设计与实现[D].天津:天津大学,2014. [11] 陈贝贝.基于ICP-MS的联用技术及其在生命体系中元素与形态分析的应用[D].武汉:武汉大学,2010. [12] 胡波,武晓梅,余韬,等.X射线荧光光谱仪的发展及应用[J].核电子学与探测技术,2015,35(7):695-702,706. HU Bo,WU Xiaomei,YU Tao,et al.The development and application of X-ray fluorescence spectrometer[J].Nuclear Electronics & Detection Technology,2015,35(7):695-702,706. [13] 吉昂.X射线荧光光谱三十年[J].岩矿测试,2012,31(3):383-398. JI Ang.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis,2012,31(3):383-398. [14] 章连香,符斌.X-射线荧光光谱分析技术的发展[J].中国无机分析化学,2013,3(3):1-7. ZHANG Lianxiang,FU Bin.Advances in X-ray fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry,2013,3(3):1-7. [15] 陆亦彬.基于XRF技术的航空发动机油液在线监测系统研究[D].南京:南京航空航天大学,2008. [16] 王毅民,邓赛文,王祎亚,等.X射线荧光光谱在矿石分析中的应用评介总论[J].冶金分析, 2020,40(10):32-49. WANG Yimin,DENG Saiwen,WANG Yiya,et al.Review on the application of X-ray fluorescence spectrometry in ores 'analysis[J].Metallurgical Analysis,2020,40(10):32-49. [17] 徐长明.XRF技术在岩心样品快速分析中的应用研究[D].成都:成都理工大学,2011. [18] 杨明太,唐慧.能量色散X射线荧光光谱仪现状及其发展趋势[J].核电子学与探测技术,2011,31(12):1307-1311. YANG Mingtai,TANG Hui.The actualities and trend of energy dispersive X-ray fluorescence spectrometry[J].Nuclear Electronics & Detection Technology,2011,31(12):1307-1311. [19] 曹发生.基于便携式XRF与高光谱的矿床快速评价方法研究[D].成都:成都理工大学,2021. [20] 高佳玺.煤质在线检测技术发展与应用研究[J].山西化工,2022,42(1):51-52,57. GAO Jiaxi.Research on development and application of on-line coal quality detection technology[J].Shanxi Chemical Industry,2022,42(1):51-52,57. [21] 罗立强,沈亚婷,吴晓军.X射线光谱分析技术发展新趋势与新方向[J].冶金分析,2021,41(12):18-26. LUO Liqiang,SEHN Yating,WU Xiaojun.Progress and trend of X-ray spectrometry[J].Metallurgical Analysis,2021,41(12):18-26. [22] Oyedotun T D T.X-ray fluorescence (XRF) in the investigation of the composition of earth materials: A review and an overview[J].Geology,Ecology,and Landscapes,2018,2(2):148-154. [23] 邓赛文,王毅民,孙晓飞,等.X射线荧光光谱技术在铁矿石分析中的应用文献评介[J].冶金分析,2019,39(11):30-49. DENG Saiwen,WANG Yimin,SUN Xiaofei,et al.Literature review on application of X-ray fluorescence spectrometry in analysis of iron ores[J].Metallurgical Analysis,2019,39(11):30-49. [24] 黄宇营,钟信宇.同步辐射X射线荧光光谱国内外研究进展[J].光谱学与光谱分析,2022,42(2):333-340. HUANG Yuying,ZHONG Xinyu.Progress of synchrotron radiation X-ray fluorescence spectrometry in China and overseas[J].Spectroscopy and Spectral Analysis,2022,42(2):333-340. [25] 柳检,劳昌玲,袁静,等.X射线光谱技术在生物与生态环境中的应用进展[J].光谱学与光谱分析,2021,41(3):675-685. LIU Jian,LAO Changling,YUAN Jing,et al.Recent progress in the application of X-ray spectrometry in biology and ecological environment [J].Spectroscopy and Spectral Analysis,2021,41(3):675-685. [26] 肖元芳,王小华,杭纬.中国原子光谱发展近况概述[J].光谱学与光谱分析,2015, 35(9):2377-2387. XIAO Yuanfang,WANG Xiaohua,HANG Wei.Recent development of atomic spectrometry in China[J].Spectroscopy and Spectral Analysis,2015,35(9):2377-2387. [27] 徐勇,程利振,金泽志,等.LIBS技术在冶金成分在线检测中的应用[J].安徽科技,2021(6):42-44. XU Yong,CHENG Lizhen,JIN Zezhi,et al.Application of LIBS technology in on-line detection of metallurgical components[J].Journal of Anhui Science and Technology,2021(6):42-44. [28] 侯冠宇,王平,佟存住.激光诱导击穿光谱技术及应用研究进展[J].中国光学,2013,6(4):490-500. HOU Guanyu,WANG Ping,TONG Cunzhu.Progress in laser-induced breakdown spectroscopy and its applications[J].Chinese Optics,2013,6(4):490-500. [29] 王超,姜道华,阎治全,等.基于激光诱导击穿光谱的元素分析技术[J].录井工程,2014,25(1):10-15. WANG Chao,JIANG Daohua,YAN Zhiquan,et al.Elemental analysis technique based on laser-induced breakdown spectroscopy[J].Mud Logging Engineering,2014,25(1):10-15. [30] Reinhard Noll,Cord Fricke-Begemann,Sven Connemann,et al.LIBS analyses for industrial applications-an overview of developments from 2014 to 2018[J].Journal of Analytical Atomic Spectrometry,2018,33(6):945-956. [31] Popov A M,Colao F,Fantoni R.Enhancement of LIBS signal by spatially confining the laser-induced plasma[J].Journal of Analytical Atomic Spectrometry,2009,24(5):602-604. [32] Bhatt C R,Hartzler D,Jain J C,et al.Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements[J].Optics & Laser Technology,2020,126:1-7. [33] Hahn D W,Omenetto N.Laser-induced breakdown spectroscopy (LIBS),part II:Review of instrumental and methodological approaches to material analysis and applications to different fields[J].Appl Spectrosc,2012,66(4):347-419. [34] Daniel A Hartzler,Chet R Bhatt,Jinesh C Jain,et al.Evaluating laser-induced breakdown spectroscopy sensor technology for rapid source characterization of rare earth elements[J].Journal of Energy Resources Technology,2019,141(7):070704. [35] 陈兴龙.基于激光诱导击穿光谱的物质成份分析方法研究[D].合肥:合肥工业大学,2014. [36] Senesi G S,Harmon R S,Hark R R.Field-portable and handheld laser-induced breakdown spectroscopy:Historical review, current status and future prospects[J].Spectrochimica Acta Part B Atomic Spectroscopy,2020,175:106013. [37] Manard B T,Wylie E M,Willson S P.Analysis of rare earth elements in uranium using handheld laser-induced breakdown spectroscopy (HH LIBS)[J].Applied Spectroscopy,2018:000370281877543. [38] Jolivet L,Leprince M,Moncayo S,et al.Review of the recent advances and applications of LIBS-based imaging[J].Spectrochimica Acta Part B Atomic Spectroscopy,2019,151:41-53. [39] Chet R Bhatt J C J,Christian L Goueguel,Dustin L McIntyre,et al.Determination of rare earth elements in geological samples using laser-induced breakdown spectroscopy (LIBS)[J].Applied Spectroscopy:Society for Applied Spectroscopy,2018,72(1):114-121. [40] 邓凡,胡桢麟,崔灏灏,等.激光诱导击穿光谱自吸收效应校正方法的研究进展[J].光谱学与光谱分析,2021,41(10):2989-2998. DENG Fan,HU Zhenlin,CUI Haohao,et al.Progress in the correction of self-absorption effect on laser-induced breakdown spectroscopy[J].Spectroscopy and Spectral Analysis,2021,41(10):2989-2998. [41] 于克强,赵艳茹,刘飞,等.激光诱导击穿光谱技术在土壤元素检测中的应用[J].光谱学与光谱分析,2016,36(3):827-833. YU Keqiang,ZHAO Yanru,LIU Fei,et al.Study on soil elements detection with laser-induced breakdown spectroscopy:A review[J].Spectroscopy and Spectral Analysis,2016,36(3):827-833. [42] Wang Z,Afgan M S,Gu W,et al.Recent advances in laser-induced breakdown spectroscopy quantification:from fundamental understanding to data processing[J].TrAC Trends in Analytical Chemistry,2021,143:116385. [43] Guo L B,Zhang D,Sun L X,et al.Development in the application of laser-induced breakdown spectroscopy in recent years:A review[J].Frontiers of Physics,2021,16(2):1-25. [44] Mekonnen K N,Ambushe A A,Chandravanshi B S,et al.Assessment of the concentration of Cr, Mn and Fe in sediment using laser-induced breakdown spectroscopy[J].Bulletin of the Chemical Society of Ethiopia,2013,27(1):1-13. [45] Motto-Ros V,Gardette V,Sancey L,et al.LIBS-based imaging:Recent advances and future directions[J].Spectroscopy,2020,35(1):34-40. [46] Hahn D W,Omenetto N.Laser-induced breakdown spectroscopy(LIBS),part II:review of instrumental and methodological approaches to material analysis and applications to different fields[J].Applied Spectroscopy,2012,66(4):347-419. [47] 陈意,胡兆初,贾丽辉,等.微束分析测试技术十年(2011—2020)进展与展望[J].矿物岩石地球化学通报,2021,40(1):1-35,253. CHEN Yi,HU Zhaochu,JIA Lihui,et al.Progress of microbeam analytical technologies in the past decade (2011-2020) and prospect[J].Bulletin of Mineralogy,Petrology and Geochemistry,2021,40(1):1-35,253. [48] 余兴.激光剥蚀电感耦合等离子体质谱新进展[J].中国无机分析化学,2012,2(1):9-16. YU Xing.New development of laser ablation inductively coupled plasma mass spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry,2012,2(1):9-16. [49] 刘勇胜,胡兆初,李明,等.LA-ICP-MS在地质样品元素分析中的应用[J].科学通报, 2013,58(36):3753-3769. LIU Yongsheng,HU Zhaochu,LI Ming,et al.Application of LA-ICP-MS in elemental analysis of geological samples[J].Science China Press,2013,58(36):3753-3769. [50] 王岚,杨理勤,王亚平,等.激光剥蚀电感耦合等离子体质谱微区分析进展评述[J].地质通报, 2012,31(4):637-645. WANG Lan,YANG Liqin,WANG Yaping,et al.Developments of laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in microanalysis[J].Geological Bulletin of China,2012,31(4):637-645. [51] 杨文武,史光宇,商琦,等.飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J].光谱学与光谱分析,2017,37(7):2192-2198. YANG Wenwu,SHI Guangyu,SHANG Qi,et al.Applications of femtosecond(fs) laser ablation-inductively coupled plasma-mass spectrometry in earth sciences[J].Spectroscopy and Spectral Analysis,2017,37(7):2192-2198. [52] 钱荣.GD-MS研究地质样品中稀土元素方法进展[C]//第十七届全国稀土分析化学学术研讨会.赣州,2019. [53] 田佳,刘鹏宇.浅析GD-MS和LA-ICP-MS在稀土分析中的应用前景[C]//第十五届全国稀土分析化学学术研讨会.包头,2015. [54] 张其凯,汤云腾,袁晓红.辉光放电质谱法测定稀土矿中的15种稀土元素[J].分析试验室,2022,41(2):207-211. ZHANG Qikai,TANG Yunteng,YUAN Xiaohong.Determination of 15 rare earth elements in rare earth ores by GD-MS[J].Chinese Journal of Analysis Laboratory,2022,41(2):207-211. [55] 龚玉爽,胡斌,付山岭,等.电子探针分析技术(EPMA)在地学中的应用综述[J].化学工程与装备,2011(6):166-168. GONG Yushuang,HU Bin,FU Shanling,et al.A review of the application of electron probe analysis (EPMA) in geoscience[J].Chemical Engineering & Equipment,2011(6):166-168. [56] 冯柳.电子探针在金属材料分析中的应用研究[J].中国金属通报,2020(7):185-186. FENG Liu.Application of electron probe in metal material analysis[J].China Metal Bulletin,2020(7):185-186. [57] 张迪,陈意,毛骞,等.电子探针分析技术进展及面临的挑战[J].岩石学报,2019,35(1):261-274. ZHANG Di,CHEN Yi,MAO Qian,et al.Progress and challenge of electron probe microanalysis technique[J].Acta Petrologica Sinica,2019,35(1):261-274. [58] 姚立.低含量、微量元素的电子探针分析方法研究与应用[D].吉林:吉林大学,2008. [59] ギヨムレ.Beijing conference and exhibition of instrumental analysis (BCEIA 12th) [J].Review of Polarography,2007,53(3):13-22. [60] LU Peichang,YANG Boyu.BCEIA: Instrumental analysis in China[J].TrAC Trends in Analytical Chemistry,1992,11(8):7-10. [61] 魏开华,苏焕华.BCEIA与质谱:历史、现状与未来[C]//分析科学 创造未来——纪念北京分析测试学术报告会暨展览会(BCEIA)创建30周年.北京,2015. [62] 张聪.安捷伦于BCEIA 2019上展示创新产品和服务[J].食品安全导刊,2019(34):44-46. ZHANG Cong.Agilent showcases innovative products and services at BCEIA 2019[J].Food Safety Guide,2019(34):44-46. [63] 张德添,刘芬.从BCEIA 30年看电子光学仪器发展历程——电子显微镜和X射线光电子能谱仪[C]//分析科学 创造未来——纪念北京分析测试学术报告会暨展览会(BCEIA)创建30周年.北京,2015. [64] Stevenson R.The world of separation science-BCEIA'99:China is building a base in analytical instruments[J].American Laboratory,2000,32(12):4-10. [65] YANG C,ZHUANG Z,TU Y,et al.Thermospray nebulizer as sample introduction technique for microwave plasma torch atomic emission spectrometry[J].Spectrochimica Acta Part B Atomic Spectroscopy,1998,53:1427-1435. [66] 张聪.知名大咖聚焦前沿技术[J].食品安全导刊,2019(31):18-21. ZHANG Cong.Big names focus on cutting edge technology[J].Food Safety Guide,2019(31):18-21. [67] 郑国经,孙素琴,罗立强,等.BCEIA 30年来光谱分析仪器的发展[C]//纪念北京分析测试学术报告会暨展览会.北京,2015.