Improvement of ion exchange separation-Na2EDTA titration for the determination of zinc in nickel-cobalt-zinc concentrate
ZUO Hongyi1, LIN Ruoxu2
1. Shenzhen Zhongjin Lingnan Nonferrous Metals Co., Ltd. Science and Technology Development Institute, Shaoguan 512024, China; 2. China Nonferrous Metals Industry Standard Metrology and Quality Institute, Beijing 100080, China
Abstract:With the increasing depletion of zinc resources, the composition of zinc concentrates becomes more and more complex. It is of great significance to accurately determine the content of zinc in zinc concentrate. In experiments, the sample was dissolved with hydrochloric acid- ammonium fluoride-nitrate acid-sulfuric acid-perchloric acid. In the medium of hydrochloric acid (1+5), the metal elements including nickel, cobalt, iron, manganese and aluminum were separated with macro-reticular type strong alkaline anionic resin. Zn2+ was eluted with ammonia-ammonium chloride solution. A small amount of ammonium fluoride and sodium hyposulfite was added into the solution after impurity separation to mask the residual iron and trace copper, respectively. The total contents of zinc and cadmium were directly titrated with Na2EDTA standard titration solution. The content of zinc could be obtained by deducting the cadmium content. Consequently, a method for determination of zinc (11%-62%) in nickel-cobalt-zinc concentrate by Na2EDTA titration with ion exchange separation was established. The partition coefficients (Kd) of metal ions on three typical strong alkaline anion resins with different acidity were investigated. The ion exchange separation conditions were finally selected as follows: D296 macro-reticular type strong alkaline anionic exchange resin and hydrochloric acid (1+5) medium. The test results showed that the presence of little NH+4 would not influence on the adsorption of Zn2+. The adsorption loss rate was less than 0.10% when the height of ion exchange column was 30 cm. The working efficiency was high and adsorption loss rate was low when the flow rate of sample solution through ion exchange column was in range of 8-10 mL/min. The proposed method was applied for the determination of zinc in three nickel-cobalt-zinc concentrate samples, and the found results were basically consistent with those obtained by sodium hydroxide precipitation separation-EDTA titration and dimethylglyoxime precipitation separation-EDTA titration. The relative standard deviations (RSD, n=11) of determination results were between 1.6% and 5.6%.
左鸿毅, 林若虚. 离子交换分离-Na2EDTA滴定法测定含镍钴锌精矿中锌的改进[J]. 冶金分析, 2022, 42(7): 46-53.
ZUO Hongyi, LIN Ruoxu. Improvement of ion exchange separation-Na2EDTA titration for the determination of zinc in nickel-cobalt-zinc concentrate. , 2022, 42(7): 46-53.
[1] 中华人民共和国工业和信息化部.YS/T 320—2014 锌精矿[S].北京:冶金工业出版社,2014. [2] 程键.火焰原子吸收光谱法连续测定锌精矿中锑钴镍[J].理化检验(化学分册),2006,42(7):576-578. CHENG Jian.Continuous determination of antimony-cobalt-nickel in zinc concentrate by flame atomic absorption spectroscopy[J]. Physical Testing and Chemical Analysis (Part B:Chemistry Analysis),2006,42(7):576-578. [3] 李功顺.火焰原子吸收法测定锌焙砂和锌精矿中高含量锌[J].分析试验室,2008,27(增刊):89-90. LI Gongshun.Determination of high content of zinc in zinc and zinc concentrates by flame atomic absorption spectrometry[J].Chinese Journal of Analysis Laboratory,2008,27(Suppl.):89-90. [4] 李文东,张林,王琼,等.ICP-AES测定高含量锌、镉和铜[J].光谱实验室,2011,28(5):2311-2312. LI Wendong,ZHANG Lin,WANG Qiong,et al.Determination of high content zinc,cadmium and copper by ICP-AES[J].Chinese Journal of Spectrographic Laboratory,2011,28(5):2311-2312. [5] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 8151.1—2012 锌精矿化学分析方法 第1部分 锌量的测定 沉淀分离Na2EDTA滴定法和萃取分离Na2EDTA 滴定法[S].北京:中国标准出版社,2012. [6] 中华人民共和国工业和信息化. YS/T 1171.1—2017 再生锌原料化学分析方法 第1部分 锌量的测定 Na2EDTA 滴定法[S].北京:冶金工业出版社,2017. [7] 奚长生,陈慧琴,梁凯,等.EDTA络合滴定法直接测定锌镉试样中锌[J].冶金分析,2002,22(1):56-58. XI Changsheng,CHEN Huiqin,LIANG Kai,et al.Direct determination of zinc in Zn-Cd samples by complexometric titration[J].Metallurgical Analysis,2002,22(1):56-58. [8] 应文河,李德泉.锌精矿中锌的测定[J].冶金分析,1993,13(4):25-27. YING Wenhe,LI Dequan.Determination of zinc in zinc concentrates[J].Metallurgical Analysis,1993,13(4):25-27. [9] 谭力红.氢氧化钠沉淀分离EDTA滴定法测定锌[J].冶金分析,2004,24(2):78-79. TAN Lihong.Determination of zinc by EDTA titrimetry after precipitation with sodium hydrate[J].Metallurgical Analysis,2004,24(2):78-79. [10] 江荆,魏雅娟,邬景荣,等.丁二酮肟沉淀分离-EDTA滴定法测定含镍锌物料中锌[J].冶金分析,2016,36(11):62-66. JIANG Jing,WEI Yajuan,WU Jingrong,et al.Determination of zinc in zinc-bearing material containing nickel by EDTA titration after precipitation separation using dimethylglyoxime[J].Metallurgical Analysis,2016,36(11):62-66. [11] 王蕾,范丽新.返滴定法测定含镍锌物料中的锌含量[J].中国无机分析化学,2020,10(5):67-72. WANG Lei,FAN Lixin.Determination of zinc content in nickel and zinc containing materials by return titration method[J].Chinese Journal of Inorganic Analytical Chemistry,2020,10(5):67-72. [12] 李增森.铅矿中锌之测定-阴离子交换法[J].化学通报,1962,1(1):53-54. LI Zengsen.Measurement of zinc in lead mine after anion exchange[J].Chemical Bulletin,1962,1(1):53-54. [13] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 8151.18—2012/ISO 12739:2006 锌精矿化学分析方法 第18部分 锌量的测定 离子交换-Na2EDTA 滴定法[S].北京:中国标准出版社,2012. [14] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 8151.8—2012 锌精矿化学分析方法 第8部分 镉量的测定 火焰原子吸收光谱法[S].北京:中国标准出版社,2012. [15] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 8151.4—2012 锌精矿化学分析方法 第4部分 二氧化硅量的测定 钼兰分光光度法[S].北京:中国标准出版社,2012. [16] 国家技术监督局.GB/T 2469—1996 硫铁矿及硫精矿中碳含量的测定 烧碱石棉重量法[S].北京:中国标准出版社,1999. [17] STRELOW F W E. An ion exchange selectivity scale of cations based on equilibrium distribution coeffients [J].Anal.Chem.1960,32(9):1185-1188.