Abstract:Multi-point calibration linear measurement system exhibits a wider range and higher accuracy and reliability of measurements compared to the single-point or two-point calibration, and it has been widely used in many fields such as chemical analysis and physical testing. A mathematical model and simulation method to evaluate the measurement uncertainty of multi-point calibration linear measurement system by Monte Carlo method (MCM) was proposed. The specific evaluation process and application of MCM in uncertainty evaluation was introduced using the determination of manganese content in low alloy steel by inductively coupled plasma atomic emission spectrmetry(ICP-AES) as the example. Firstly, MCM method was used to evaluate the measurement uncertainty through simulation sampling analysis according to the probability distribution type of input quantity. Then the GUM method was used for evaluation. The experimental results showed that the average measurement value of manganese content in the specimen was (0.919±0.012)%, k=1.96, which was consistent with the expanded uncertainty calculated by the GUM method. The method given in the paper could be applied to the uncertainty evaluation of multi-point calibration linear measurement systems. And it solved the issues of the import of uncertainty measures introduced by reference values of standard samples and volatility of linear calibration, to a certain extent, which would promote the innovation and development of uncertainty assessment and application.
刘枫, 林莎莎, 石正岩, 齐丽璟, 刘颖. 蒙特卡洛法在多点校准线性测量系统不确定度评定中的应用[J]. 冶金分析, 2022, 42(4): 19-27.
LIU Feng, LIN Shasha, SHI Zhengyan, QI Lijing, LIU Ying. Uncertainty evaluation of the multi-point calibration linear measurement system based on Monte Carlo method. , 2022, 42(4): 19-27.
[1] ISO/TMBG.ISO/IEC GUIDE 98-3:2008 Uncertainty of measurement-Part 3:Guide to the expression of uncertainty in measurement (GUM:1995)[S].Switzerland: International Organization for Standardization,2008. [2] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 27418—2017(ISO/IEC Guide 98-3:2008 MOD) 测量不确定度评定和表示[S].北京:中国标准出版社,2018. [3] ISO/TMBG.ISO/IEC GUIDE 98-3:2008/SUPPL 1:2008 Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)-Supplement 1: Propagation of distributions using a Monte Carlo method[S].Switzerland:International Organization for Standardization,2008. [4] 国家市场监督管理总局,中国国家标准化管理委员会.GB/T 27419—2018测量不确定度评定和表示 补充文件1:基于蒙特卡洛方法的分布传播[S].北京:中国标准出版社,2018. [5] 曹芸,陈怀艳,韩洁.采用MCM对GUM法测量不确定度评定的验证方法研究[J].宇航计测技术,2012,32(2):75-78. CAO Yun,CHEN Huaiyan,HAN Jie.Research about validating GUM uncertainty evaluation using MCM[J].Journal of Astronautic Metrology and Measurement,2012,32(2):75-78. [6] 刘园园,杨健,赵希勇,等.GUM法和MCM法评定测量不确定度对比分析[J].计量学报,2018,39(1):135-139. LIU Yuanyuan,YANG Jian,ZHAO Xiyong,et al.Comparative analysis of uncertainty measurement evaluation with GUM and MCM[J].Acta Metrologica Sinica,2018,39(1):135-139. [7] 陈子凡.基于蒙特卡洛法的溶解性总固体测量不确定度评定[J].食品安全质量检测学报,2017,8(6):2220-2225. CHEN Zifan.Uncertainty evaluation of determination of total dissolved solids based on Monte Carlo method[J].Journal of Food Safety and Quality,2017,8(6):2220-2225. [8] 王伟,宋明顺,陈意华,等.蒙特卡洛方法在复杂模型测量不确定度评定中的应用[J].仪器仪表学报,2008,29(7):1446-1449. WANG Wei,SONG Mingshun,CHEN Yihua,et al.Application of Monte-Carlo method in measurement uncertainty evaluation of complicated model[J].Chinese Journal of Scientific Instrument,2008,29(7):1446-1449. [9] 张静,赵静.煤中全硫含量测量不确定度的蒙特卡洛法评定[J].煤质技术,2014(3):29-32. ZHANG Jing,ZHAO Jing.Evaluation of uncertainty measurement for determination of total sulphur in coal by Monte Carlo method[J].Coal Quality Technology,2014(3):29-32. [10] 中国金属学会分析测试分会.CSM 01010102—2006 分光光度法测量结果 不确定度评定规范[S].北京:中国标准出版社,2006. [11] 中国金属学会分析测试分会.CSM 01010103—2006 原子吸收光谱法测量结果 不确定度评定规范[S].北京:中国标准出版社,2006. [12] 中国金属学会分析测试分会.CSM 01010104—2006 电感耦合等离子体发射光谱法 测量结果不确定度评定规范[S].北京:中国标准出版社,2006. [13] 刘攀,张毅,张健豪.单点校准线性测量系统不确定度的蒙特卡洛法评定模型构建与应用[J].冶金分析,2020,40(8):22-29. LIU Pan,ZHANG Yi,ZHANG Jianhao.Evaluation of the uncertainty for the single-point calibration linear measurement system based on Monte Carlo method[J].Metallurgical Analysis,2020,40(8):22-29. [14] 李宁,郭健,王倩,等.单点与多点校正法的对比及其不确定度来源评估[J].低温与特气,2008,26(6):37-40. LI Ning,GUO Jian,WANG Qian,et al.Comparison of the single-point and multipoint calibration method for gas standards and evaluation of the source of uncertainty[J].Low Temperature and Specialty Gases,2008,26(6):37-40. [15] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 20125—2006低合金钢 多元素含量的测定 电感耦合等离子体发射光谱法[S].北京:中国标准出版社,2006. [16] 中华人民共和国工业和信息化部.YB/T 4396—2014 不锈钢 多元素含量的测定 电感耦合等离子体原子发射光谱法[S].北京:中国标准出版社,2014. [17] 罗海霞.电感耦合等离子体发射光谱(ICP-OES)法测定不锈钢中的硅、锰、磷、铬、镍、钼、铜[J].中国无机分析化学,2019,9(2):58-60,64. LUO Haixia.Determination of silicon,manganese,phosphorus,chromium,nickel,molybdenum and copper in stainless steel by ICP-OES[J].Chinese Journal of Inorganic Analytical Chemistry,2019,9(2):58-60,64. [18] 崔彦红,滕巍,王艳玲.电感耦合等离子体原子发射光谱法同时测定不锈钢中的11种元素[J].化学分析计量,2019,28(6):48-51. CUI Yanhong,TENG Wei,WAN Yanling.Simultaneous determination of 11 elements in stainless steel by ICP-AES[J].Chemical Analysis and Meterage,2019,28(6):48-51. [19] 李丽蓓,王石,朱靖蓉,等.分光光度法测定饲料中尿素不确定度评定[J].化学分析计量,2020,29(6):130-135. LI Libei,WANG Shi,ZHU Jingrong,et al.Uncertainty evaluation for the determination of urea in feed by spectrophotometry[J].Chemical Analysis and Meterage,2020,29(6):130-135. [20] 中华人民共和国国家质量监督检验检疫总局.JJF 1135—2005 化学分析测量不确定度评定[S].北京:中国计量出版社,2005.