Original position quantitative statistic distribution characterization of composition in triple melting GH4169 alloy ingot based on microbeam X-ray fluorescence spectrometry
CAI Wenyi1, TANG Chao2, DU Jinhui2, WANG Peng3*, LI Dongling3,4, WANG Haizhou3,4
1. Central Iron & Steel Research Institute, Beijing 100081,China; 2. Beijing CISRI-GAONA Materials and Technology Co., Ltd., Beijing 100081,China; 3. NCS Testing Technology Co., Ltd., Beijing 100081, China; 4. Beijing Key Laboratory of Metallic Materials Characterization, Beijing 100081, China
Abstract:GH4169 alloy is prepared by vacuum induction melting(VIM)-protective electroslag remelting (PESR)-vacuum arc remelting(VAR) triple melting process. Since the alloying degree is relatively high and the size of alloy ingot is large, the constituent difference caused by element segregation and uneven distribution will have harmful influence on the mechanical property and physical property of alloy. The microbeam X-ray fluorescence spectrometry (μ-XRF) has many advantages such as high micro-area resolution, rapid analysis speed, simultaneous determination of multi-elements and nondestructive test. The measuring conditions and instrumental quantitative method were optimized. The determination method of eight major elements (Al, Ti, Cr, Fe, Co, Ni, Nb and Mo) in GH4169 alloy ingot by μ-XRF was established. The distribution trend of elemental content and maximum segregation degree from ingot edge to center was studied. The statistical analysis of maximum segregation degree, statistical segregation degree and statistical coincidence degree of elements was conducted. The distribution law of elemental content in GH4169 alloy ingot was obtained: the content of Ti, Co, Nb and Mo in center of ingot was high, while the content in edge was low; the content of Al, Cr, Fe and Ni in edge of ingot was high, while the content in center was low.
蔡文毅, 唐超, 杜金辉, 王蓬, 李冬玲, 王海舟. 基于微束X射线荧光光谱的三联冶炼GH4169合金铸锭成分原位定量统计分布表征[J]. 冶金分析, 2021, 41(10): 1-11.
CAI Wenyi, TANG Chao, DU Jinhui, WANG Peng, LI Dongling, WANG Haizhou. Original position quantitative statistic distribution characterization of composition in triple melting GH4169 alloy ingot based on microbeam X-ray fluorescence spectrometry. , 2021, 41(10): 1-11.
[1] 王鹏宇,张俊虎.不同热处理条件下GH4169合金组织性能研究[J].铸造技术,2014,35(11):2551-2553. WANG Pengyu,ZHANG Junhu.Study of microstructure and properties of GH4169 alloy at different heat treatment conditions[J].Foundry Technology,2014,35(11):2551-2553. [2] Cruzado A,Lucarini S,Llorca J,et al.Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline Inconel 718[J].International Journal of Fatigue,2018,113:236-245. [3] 杜金辉,吕旭东,董建新,等.国内变形高温合金研制进展[J].金属学报,2019,55(9):1115-1132. DU Jinhui,LÜ Xudong,DONG Jianxin,et al.Research progress of wrought superalloys in China[J].Acta Metallurgica Sinica,2019,55(9):1115-1132. [4] Chamanfar A,Sarrat L,Jahazi M,et al.Microstructural characteristics of forged and heat treated Inconel-718 disks[J].Materials Design,2013,52:791-800. [5] 杜金辉,吕旭东,邓群,等.GH4169合金研制进展[J].中国材料进展,2012,31(12):12-20,11. DU Jinhui,LÜ Xudong,DENG Qun,et al.Progress in GH4169 alloy development[J].Materials China,2012,31(12):12-20,11. [6] CHEN Z Y,YANG S F,LI J S,et al.Effects of different hot working techniques on inclusions in GH4738 superalloy produced by VIM and VAR[J].Materials,2018,11(6):1024. [7] 张勇,李鑫旭,韦康,等.三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为[J].金属学报,2020,56(8):1123-1132. ZHANG Yong,LI Xinxu,WEI Kang,et al.Element segregation in GH4169 superalloy large-scale ingot and billet manufactured by triple-melting[J].International Journal of Fatigue,2020,56(8):1123-1132. [8] Holland S,WANG X Q,CHEN J,et al.Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting[J].J. Alloys Compd.,2019,784:182. [9] Pagnotta S,Lezzerini M,Campanella B,et al.Fast quantitative elemental mapping of highly inhomogeneous materials by micro-laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2018,116:9-15. [10] Jain J,Quarles C D,Moore J,et al.Elemental mapping and geochemical characterization of gas producing shales by laser induced breakdown spectroscopy[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2018,150:1-8. [11] 韩中杰,刘佳,王辉,等.基于激光诱导击穿光谱技术的重轨钢中铝系夹杂物含量分析方法研究[J].冶金分析,2019,39(6):1-6. HAN Zhongjie,LIU Jia,WANG Hui,et al.Study on analytical method for the content of aluminium inclusions in heavy rail steel by laser-induced breakdown spectroscopy[J].Metallurgical Analysis,2019,39(6):1-6. [12] Y Kubo.Focussed ion beam thin sample microanalysis using a field emission gun electron probe microanalyser[J].IOP Conference Series:Materials Science and Engineering,2018,304(1):1-12. [13] 孙轲,葛笑寒.X射线荧光光谱法用于粗铜中铜和13种杂质元素的测定[J].冶金分析,2020,40(4):60-64. SUN Ke,GE Xiaohan.Application of X-ray fluorescence spectrometry on the determination of copper and thirteen impurity elements in crude copper[J].Metallurgical Analysis,2020,40(4):60-64. [14] 王祎亚,王毅民,高新华,等.X射线荧光光谱在岩石分析中的应用评介[J].冶金分析,2020,40(10):1-11. WANG Yiya,WANG Yimin,GAO Xinhua,et al.Review on the application of X-ray fluorescence spectrometry in rock analysis[J].Metallurgical Analysis,2020,40(10):1-11. [15] 邓赛文,王毅民,孙晓飞,等.X射线荧光光谱技术在铁矿石分析中的应用文献评介[J].冶金分析,2019,39(11):30-49. DENG Saiwen,WANG Yimin, SUN Xiaofei,et al.Literature review on application of X-ray fluorescence spectrometry in analysis of iron ores[J].Metallurgical Analysis,2019,39(11):30-49. [16] Sudbrink B,Moradllo M K,Hua Q N,et al.Imaging the presence of silane coatings in concrete with micro X-ray fluorescence[J].Cement and Concrete Research,2017,92:121-127. [17] 罗立强,詹秀春,李国会.X射线荧光光谱分析[M].2版.北京:化学工业出版社,2015.