Abstract:Metallurgical Analysis focused on the scientific and technological progress in metallurgical and material engineering in the last forty years. The published papers showed distinct characteristics of problem orientation, technology leadership, object diversity, connotation richness, interdisciplinary integration, and reference value. So far, Metallurgical Analysis has become the most influential specialized academic journal in the field of metallurgical analysis, and it supports strongly the high-quality development in metallurgical and material engineering technologies.
王海舟. 冶金分析表征支撑冶金与材料工程科技高质量发展[J]. 冶金分析, 2021, 41(12): 1-3.
WANG Haizhou. Metallurgical analysis and characterization support high-quality development in metallurgical and material engineering technologies. , 2021, 41(12): 1-3.
[1] 《冶金分析》编辑部筹备组.创刊词[J].冶金分析(Metallurgical Analysis),1981(0):1. [2] 毛月英,郑晓冬,唐代华,等.我国冶金分析研究进展—基于《冶金分析》创刊40年(1981—2020)文献计量学分析[J].冶金分析,2021,41(2):1-8. MAO Yueying,ZHENG Xiaodong,TANG Daihua,et al.Advance on metallurgical analysis in China based on the bibliometric analysis of Metallurgical Analysis for 40 years (1981-2020) [J].Metallurgical Analysis,2021,41(2):1-8. [3] 殷瑞钰.21世纪初中国钢铁业发展战略的初步评估[J].炼钢(Steelmaking),2002,18(1):1-8. [4] 翁宇庆.中国钢铁材料发展现状及迈入新世纪的对策[J].钢铁,2001,36(10):1-5. WENG Yuqing.Present status and developing strategy of steels at the turn of new century in China[J].Iron and Steel,2001,36(10):1-5. [5] WANG Haizhou,XIE Jianxin.Editorial for special issue on materials genome engineering[J].Engineering,2020,6(6):585-586. [6] WANG Haizhou,ZHAO Lei,JIA Yunhai,et al.State-of-the-art review of high-throughput statistical spatial-mapping characterization technology and its applications[J].Engineering,2020,6(6):621-636. [7] 王海舟.21世纪冶金分析的若干问题[J].钢铁,2000,35(1):73-78. WANG Haizhou.Sevetal problems in metallurgical analysis in the 21 century[J].Iron and Steel, 2000,35(1):73-78. [8] 彭涯,李冬玲,周晴晴,等.大尺寸动车组车轮剖面夹杂物原位统计分布表征方法研究与应用[J].冶金分析,2021,41(4):1-8. PENG Ya,LI Dongling,ZHOU Qingqing,et al.Research and application of original position statistic distribution characterization method for inclusions in profile of large-size high speed train wheels[J].Metallurgical Analysis,2021,41(4):1-8. [9] 冯浩洲,王蓬,李冬玲,等.高铁车轮轮辋部位元素的原位统计分布分析方法研究与应用[J].冶金分析,2021,41(3):1-8. FENG Haozhou,WANG Peng,LI Dongling,et al.Research and application on original position statistic distribution analysis method of elements in rim of high-speed railway wheel[J].Metallurgical Analysis,2021,41(3):1-8. [10] 蔡文毅,唐超,杜金辉,等.基于微束X射线荧光光谱的三联冶炼GH4169合金铸锭成分原位定量统计分布表征[J].冶金分析,2021,41(10):1-11. CAI Wenyi,TANG Chao,DU Jinhui,et al.Original position quantitative statistic distribution characterization of composition in triple melting GH4169 alloy ingot based on microbeam X-ray fluorescence spectrometry[J].Metallurgical Analysis,2021,41(10):1-11. [11] 卢毓华,沈学静,李杰,等.变形FGH96合金涡轮盘物理化学相分析[J].冶金分析,2018,38(1):1-8. LU Yuhua,SHEN Xuejing,LI Jie,et al.Physical and chemical phase analysis of turbine disk of wrought FGH96[J].Metallurgical Analysis,2018,38(1):1-8. [12] 包香春,张慧珍,刘晓杰,等.电感耦合等离子体质谱法测定稀土系贮氢合金中镉和铅[J].冶金分析,2017,37(3):53-57. BAO Xiangchun,ZHANG Huizhen,LIU Xiaojie,et al.Determination of cadmium and lead in rare earth based hydrogen storage alloy by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis,2017,37(3):53-57. [13] 冯光,李冬玲,刘宗鑫,等.基于多路送粉工艺的增材制造样品成分、组织与硬度性能研究[J].冶金分析,2019,39(11):1-8. FENG Guang,LI Dongling,LIU Zongxin,et al.Evaluation of composition,microstructure and hardness of additive manufacturing samples based on multi-way powder feeding process[J].Metallurgical Analysis,2019,39(11):1-8. [14] 吴园园,金传伟,张珂,等.A36船板钢三维原子探针样品的微区定位制备及表征[J].冶金分析,2017,37(7):1-5. WU Yuanyuan,JIN Chuanwei,ZHANG Ke, et al.Micro-location preparation and characterization of three-dimensional atom probe specimen in A36 ship plate steel[J].Metallurgical Analysis,2017,37(7):1-5. [15] 谢金鹏,林双平,钟振前,等.0Cr17Ni4Cu4Nb传感器断裂原因分析[J].冶金分析,2019,39(7):53-57. XIE Jinpeng,LIN Shuangping,ZHONG Zhenqian,et al.Fracture cause analysis of 0Cr17Ni4Cu4Nb sensor[J].Metallurgical Analysis,2019,39(7):53-57. [16] 崔桂彬,鞠新华,尹立新,等.基于电子背散射衍射技术的低碳钢原奥氏体晶界的显示技术探讨[J].冶金分析,2019,39(7):1-7. CUI Guibin,JU Xinhua,YIN Lixin,et al.Discussion of display technology for the prior austenite grain boundary in low-carbon steel based on electron backscatter diffraction[J].Metallurgical Analysis,2019,39(7):1-7. [17] 梁元,沈学静,易启辉,等.X射线荧光光谱法在线测定稀土冶炼分离过程中钬铒铥镱[J].冶金分析,2016,36(8):1-6. LIANG Yuan,SHEN Xuejing,YI Qihui,et al.On-line determination of holmium,erbium,thulium and ytterbium in rare earth smelting separation process by X-ray fluorescence spectrometry[J].Metallurgical Analysis,2016,36(8):1-6. [18] 李坦平,谢华林,袁龙华,等.电感耦合等离子体串联质谱法测定高纯氧化镁粉中金属杂质元素[J].冶金分析,2018,38(10):16-22. LI Tanping,XIE Hualin,YUAN Longhua,et al.Determination of metal impurity elements in high purity magnesium oxide powder by inductively coupled plasma tandem mass spectrometry[J].Metallurgical Analysis,2018,38(10):16-22. [19] 王长华,王伟华,墨淑敏,等.辉光放电质谱法测定高纯金靶材中42种杂质元素[J].冶金分析,2021,41(2):9-15. WANG Changhua,WANG Weihua,MO Shumin,et al.Determination of forty-two impurity elements in high-purity gold target by glow discharge mass spectrometry[J].Metallurgical Analysis,2021,41(2):9-15. [20] 辛勇,李洋,蔡振荣,等.激光诱导击穿光谱液态金属成分在线分析仪在线监测熔融铝液中元素成分[J].冶金分析,2019,39(1):15-20. XIN Yong,LI Yang,CAI Zhenrong,et al.On-line monitoring of elemental composition in molten aluminum by laser-induced breakdown spectroscopy online analyzer for liquid metal composition[J].Metallurgical Analysis,2019,39(1):15-20. [21] 刘洁,戚振南,葛晶晶,等.涂镀板涂层表面质量表征与分析[J].冶金分析,2019,39(1):28-34. LIU Jie,QI Zhennan,GE Jingjing,et al.Quality characterization and analysis of coated plate coating surface[J].Metallurgical Analysis,2019,39(1):28-34. [22] 刘明博,廖学亮,胡学强,等.最优化算法与纯元素谱剥离相结合的能量色散X射线荧光谱解谱方法[J].冶金分析,2019,39(8):19-22. LIU Mingbo,LIAO Xueliang,HU Xueqiang,et al.Combination of optimization algorithm and pure-element spectral stripping for the unfolding method of energy dispersive X-ray fluorescence spectrometry[J].Metallurgical Analysis,2019,39(8):19-22. [23] 李明,赵迎,崔飞鹏,等.基于经验模态分解方法的拉曼光谱信号处理研究[J].冶金分析,2019,39(5):57-60. LI Ming,ZHAO Ying,CUI Feipeng,et al.Study on signal processing of Raman spectrum based on empirical mode decomposition method[J].Metallurgical Analysis,2019,39(5):57-60.