流动注射在线共沉淀火焰原子吸收光谱法测定氯化钴溶液中痕量铅
张立岩,王国强,杨润仁
甘肃金川集团有限公司检测中心,甘肃金昌737100
Determination of trace lead in cobalt chloride solution by flow injection on-line coprecipitation flame atomic absorption spectrometry
ZHANG Li-yan, WANG Guo-qiang,YANG Run- ren
Testing Center of Jinchuan Group Co., Ltd.,Jinchang 737100,China
摘要 为解决钴冶金生产中痕量铅的快速监控问题, 将流动注射在线富集分离技术与火焰原子吸收光谱检测方法相结合测定了氯化钴溶液中痕量铅。研究了铅的富集和分离条件, 结果表明, 用填充脱脂棉的微型锥形过滤器作为过滤柱, 以硝酸铁作为共沉淀剂, 在pH10的氨性缓冲介质中铁和铅生成氢氧化物共沉淀, 富集在过滤柱上, 可与高钴基体分离, 过滤柱上铅经盐酸(1+9)洗脱后用火焰原子吸收光谱法测定。在283.3nm波长处测得铅的特征浓度为0.008mg/L(1%吸收), 检出限为5μg/L, 样品中铅测定结果的相对标准偏差为6.1%(n =11), 满足了快速分析的要求。
关键词 :
共沉淀 ,
流动注射 ,
火焰原子吸收光谱法 ,
痕量铅 ,
氯化钴
Abstract :To realize real time monitoring of trace lead in metallurgical production of cobalt, flow injection online enrichment separation technique coupled with flame atomic absorption spectrometry was used to determine trace lead in cobalt chloride solution. The enrichment and separation conditions of lead were studied. The result indicated that by using miniature cone filter filled with degreasing cotton as filtration column and ferric nitrate as co-precipitant, in the ammonia buffer medium of pH10, iron and lead produced hydroxide co-precipitation to concentrate on the filter column and separate from high cobalt matrix. The lead on the filter column was eluted by hydrochloric acid (1+9) and determined by flame atomic absorption spectrometry. At the wavelength of 283.3 nm, the characteristic concentration of lead was 0.008 mg/L (1% absorption), the detection limit was 5 μg/L and RSD was 6.1% (n =11). It can meet the requirement of fast analysis.
Key words :
coprecipitation
flow injection
flame atomic absorption spectrometry
trace lead
cobalt chloride
收稿日期: 2013-05-31
作者简介 : 张立岩(1967-),男,工程师,主要从事镍钴铜等有色金属及化工分析工作E-mail:zhangliyan@jnmc.com
[1] 方肇伦.流动注射分析法[M].北京;科学出版社,1999.
[2] 李青, 李义兵.流动注射分析在分析化学中的应用与发展[J].太原师范学院学报;自然科学(Journal of Taiyuan Normal University;Natural Science),2006,5(1);84-88.
[3] 顾景贤,王爱霞,周彦平,等.液膜法富集痕量铅及其火焰原子吸收分光光度法测定[J].分析试验室(Chinese Journal of Analysis Laboratory),1991,10(1);32-34.
[4] 苏耀东,朱文颖,覃俐,等.空气隔离法流动注射在线富集火焰原子吸收测定水样中的痕量铜和镉[J].光谱学与光谱分析(Spectroscopy and Spectral Analysis),2006,26(5);959—962.
[5] 王爱霞,郭黎平,吴冬梅.微型柱现场预富集流动注射火焰原子吸收测定环境水样中的铅和镉[J].光谱学与光谱分析,2006,26(7);1345—1348.
[6] 吴福全,李绍南.缝式石英管捕集─火焰原子吸收法测定地面水中痕量铜、铅、镉[J].环境监测管理与技术(The Administration and Technique of Environmental Monitoring),1994,6(1);29-31.
[7] 童颖,徐芳,刘志高,等.流动注射微柱预富集一火焰原子吸收光谱法测定海水中铅[J].理化检验;化学分册(Physical Testing and Chemical Analysis;Part B Chemical Analysis),2012,48(12);269-271.
[8] 李静,叶巧云. 流动注射在线预富集测定环境样品中的痕量铅[J].宁波工程学院学报(Journal of Ningbo University of Technology),2010,22(4);42-47.
[9] 高甲友.流动注射一在线富集火焰原子吸收分光光度法测定痕量铅[J].分析科学学报(Journal of Analytical Science),2007,23(4);489-491.
[10] 陈中兰.螯合棉纤维预富集流动注射在线测定痕量铅[J].光谱学与光谱分析(Spectroscopy and Spectral Analysis),2007,27(6);1243-1245.
[1]
邹雯雯, 岳春雷, 赵祖亮, 张庆建, 周龙龙, 徐兆锋. 微波消解-火焰原子吸收光谱法测定铜精矿中银 [J]. 冶金分析, 2018, 38(9): 59-62.
[2]
王虹, 魏秉炎, 韩娟, 张良. 火焰原子吸收光谱法测定冰铜中钴 [J]. 冶金分析, 2018, 38(7): 68-72.
[3]
邹德霜,李晓媛,田伦富,田东,代以春. 火焰原子吸收光谱法测定纯铜和铜合金中铅 [J]. 冶金分析, 2018, 38(3): 46-50.
[4]
刘晓杰,王燕霞,于勇海. 空气-乙炔火焰原子吸收光谱法测定钐钴永磁合金中钙量 [J]. 冶金分析, 2018, 38(3): 51-55.
[5]
黄豪杰,朱隽,许菲菲. 火焰原子吸收光谱法测定钕铁硼磁铁中铅 [J]. 冶金分析, 2018, 38(3): 75-79.
[6]
徐艳燕, 朱国忠, 柴瑾瑜, 韩峰, 潘丽娟, 张科翠. 电感耦合等离子体原子发射光谱法测定钴产品生产过程净化液中12种微量元素 [J]. 冶金分析, 2018, 38(12): 26-35.
[7]
罗永红,韦真周,覃辉平,覃雪凤,林凌宇,陈曼. 乙醇浸泡-活性炭富集火焰原子吸收光谱法测定烧结机头电除尘灰中金 [J]. 冶金分析, 2017, 37(9): 63-67.
[8]
任悦, 刘楠, 王笑娟, 宁娜静, 孙明亮. 火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法测定仿真饰品中铅、镉的对比探讨 [J]. 冶金分析, 2017, 37(8): 69-72.
[9]
王勇,陈小毅,刘林. 氧化亚氮-乙炔火焰原子吸收光谱法测定钒钛高炉渣中二氧化钛 [J]. 冶金分析, 2017, 37(6): 39-43.
[10]
吕茜茜,张钊,王晋平. 电解重量法测定阳极铜中铜 [J]. 冶金分析, 2017, 37(5): 30-33.
[11]
孔会民. 聚氨酯泡沫塑料吸附-火焰原子吸收光谱法测定铜选矿流程样品中金 [J]. 冶金分析, 2017, 37(3): 29-33.
[12]
孙宝莲,董岐,周恺,李波. 火焰原子吸收光谱法测定铜磁铁矿中铜 [J]. 冶金分析, 2017, 37(3): 44-47.
[13]
赵义,周龙. 铋和二氧化锰共沉淀分离-火焰原子吸收光谱法测定铅锭中铋 [J]. 冶金分析, 2017, 32(2): 13-17.
[14]
丁轶聪,高伟. 火焰原子吸收光谱法测定粗锌中铁 [J]. 冶金分析, 2017, 37(10): 74-78.
[15]
张宏丽,倪文山,肖芳,毛香菊,姚明星,崔茹良. 砷共沉淀-电感耦合等离子体原子发射光谱法测定金精矿中硒和碲 [J]. 冶金分析, 2016, 36(9): 32-36.