石墨炉原子吸收光谱法测定钮扣电池中痕量金
贺攀红,张 伟,杨 珍
河南省核工业放射性核素检测中心,河南郑州 450002
Determination of trace gold in button batteries using graphite furnace atomic absorption spectrometry
HE Pan-hong , ZHANG Wei , YANG Zhen
Henan Nuclear Industry Radioactive Nuclide Test Centre, Zhengzhou 450002, China
摘要 样品经王水溶解,聚氨酯泡沫塑料分离富集后,用20 g/L硫脲溶液解析,20 g/L抗坏血酸溶液作基体改进剂,采用石墨炉原子吸收光谱测定钮扣电池中痕量金。优化了石墨炉的测定条件,采用700 ℃和1 700 ℃作为灰化和原子化温度,缩短了测定时间,延长了石墨管的使用寿命。测定结果显示钮扣电池中金含量低于10 ng/g,RSD低于10 %,回收率在88 %~112 %之间,方法检出限为0.15 ng/g,该法适合电子元器件中痕量金的测定。
关键词 :
石墨炉原子吸收光谱法 ,
钮扣电池 ,
痕量金 ,
硫脲 ,
抗坏血酸
Abstract : The sample was dissolved by aqua regia, foam separated and enriched by polyurethane, and then analyzed by thiourea solution of 20 g/L. A method for determination of trace gold in button batteries by graphite furnace atomic absorption spectrometry was established.The gold was determined with ascorbic acid solution of 20 g/L as matrix modifier. The detection conditions of graphite furnace atomic absorption spectrometry was optimized with 700 ℃ and 1 700 ℃ as ashing and atomization temperature, respectively ,which shortened the measurement time and extended the life of graphite tube. The results showed that the gold element in button batteries was less than 10 ng/g, RSD was less than 10 % and the recovery was between 88 % and 112 %. Detection limit was 0.15 ng/g. The method was suitable for determination of trace gold in electronic components.
Key words :
graphite furnace atomic absorption spectrometry
button batteries
trace gold
thiourea
ascorbic acid
收稿日期: 2013-02-21
作者简介 : 贺攀红(1983-),男,工程师,主要从事岩矿分析工作;E-mail:hepanhong1983@163.com
[1] 卫碧文,缪俊文,龚治湘,等.在线标准加入火焰原子吸收光谱法测定钮扣电池中铅和镉[J]. 理化检验-化学分册(Physical Testing and Chemical Analysis Part B: Chemical Analysis),2006,42:815-817.
[2] 张华,司得勇,徐忠良,等.活性碳富集分离-氢醌容量法测定金矿石中金的不确定度评定[J].新疆地质(Xinjiang Geology ),2007,2:210-212.
[3] 尹明,李家熙.岩石矿物分析(第四版) [M].北京:地质出版社,2011:814-816.
[4] 田和平.TAS-990AFG石墨炉原子吸收法测定化探样品中微量金[J].甘肃科技(Gansu Science and Technology),2010, 26(18):51-52.
[5] 黄仁忠.硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银[J].岩矿测试(Rock and Mineral Analysis), 2008,27(3):237-238.
[6] 王进,张超辉,凤吾利.聚氨酯泡塑富集-石墨炉原子吸收法测定土壤样品中的痕量金[J].内蒙古石油化工(Inner Mongolia Petrochemical Industry),2011,23:25-26.
[7] 刘先国,方金东.活性炭吸附-电感耦合等离子体发射光谱法测定化探样品中痕量金铂钯[J].贵金属(Precious Metals),2002,23(1):33-35.
[8] 贺攀红,荣耀,龚治湘.P350微色谱柱在线分离富集-火焰原子吸收光谱法测定矿石中痕量金[J].岩矿测试(Rock and Mineral Analysis),2011,30(4):457-460.
[9] 薛光.泡沫塑料在金的分析与测试中的应用[J].黄金地质科技(Gold Geological Science and Technology),1989,2:77-86.
[10] 陈寿根,白欣红.关于聚氨醋泡沫塑料对纳克量金的吸附性能的探讨[J].有色矿冶(Non-ferrous Mining and Metallurgy),1988,4:54-58.
[11] 冯立顺,刘洪燕.石墨炉原子吸收法测定金属过程中常用基体改进剂效用分析[J].福建分析测试(Fujian Analysis and Testing),2007,16(3):46-48.
[1]
刘正, 王海舟, 李小佳, 贾云海. 第三液相富集-石墨炉原子吸收光谱法测定高温合金中痕量碲 [J]. 冶金分析, 2016, 36(5): 1-6.
[2]
龙安应,刘全亨,吴胜金,王士魁,李 悦. 低温灰化-悬浮液进样石墨炉原子吸收光谱法测定煤中镉 [J]. 冶金分析, 2016, 36(4): 28-33.
[3]
程晓娟. 石墨炉原子吸收光谱法测定铁矿石中痕量铅 [J]. 冶金分析, 2016, 36(12): 50-54.
[4]
杜芳艳, 李 梅, 刘 丽. 铁-偶氮氯膦-I-硫脲配合物的极谱吸附波及其应用 [J]. 冶金分析, 2015, 35(5): 16-19.
[5]
苏爱萍,海兰,石如祥. 石墨炉原子吸收光谱法测定锡铅焊料中铝 [J]. 冶金分析, 2015, 35(4): 59-64.
[6]
温欣荣, 赖珊霞, 崔修远, 吴斌斌, 焦思权, 罗俏芳, 丘苑红. 碘化钾-抗坏血酸-十四烷基三甲基溴化铵体系浮选分离铜 [J]. 冶金分析, 2014, 34(4): 65-69.
[7]
田春秋,邵坤. 微波消解-石墨炉原子吸收光谱法测定钛白粉中钒 [J]. 冶金分析, 2014, 34(12): 48-51.
[8]
吴永明,陶武,黄飞雪,钟广蓉,廖丽红. 石墨炉原子吸收光谱法测定化学镀镍液中痕量铅 [J]. 冶金分析, 2014, 34(10): 61-64.
[9]
周煜,谭艳山,朱利亚,牛春林,汤云正,李玉仙,李美菊,万仲建,王前会. 硫脲光度法测定粗铼酸钾中铼时钼干扰的消除 [J]. 冶金分析, 2013, 33(9): 57-60.
[10]
李奋,吴文启,谢晓雁,苏信宇,梁晓明,卢金荣. 离子交换分离石墨炉原子吸收光谱法测定高纯铟中痕量铅 [J]. 冶金分析, 2013, 33(12): 19-23.
[11]
冯长根, 孙耀冉,李明愉,曾庆轩 . 新型螯合纤维在痕量金属离子的预富集测定中应用 [J]. 冶金分析, 2012, 32(5): 10-17.
[12]
苏爱萍,海 兰. 石墨炉原子吸收光谱法测定锡锭中痕量铝 [J]. 冶金分析, 2012, 32(11): 67-71.
[13]
胡力玫,郑红*,刘江涛,张迎雪. 改性纳米二氧化钛分离富集电感耦合等离子体原子发射光谱法测定地质样品中金钯铑 [J]. 冶金分析, 2012, 32(02): 38-41.
[14]
杜芳艳*,张亚,邓保炜,王星. 钯-硫脲-碘酸钾体系极谱络合吸附波及其应用 [J]. 冶金分析, 2011, 31(8): 44-47.
[15]
戚淑芳*,张杰,王莹,宁松. 以抗坏血酸作还原滴定剂电位滴定法测定铁矿石中全铁 [J]. 冶金分析, 2011, 31(5): 63-66.